aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-17 06:42:50 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-17 06:42:50 +0000
commit17259d6a532d10a2e38815f6cc394d35d7f31bd9 (patch)
tree92276a7649ede5b5476d5383a6dec278fd9401d5 /src/share/algebra/browse.daase
parent1bfecf3e58163305cb5753caab462ed57d0d67fc (diff)
downloadopen-axiom-17259d6a532d10a2e38815f6cc394d35d7f31bd9.tar.gz
* algebra/catdef.spad.pamphlet (PartialDifferentialSpace): New.
(PartialDifferentialRing): Now extend PartialDifferentialSpace.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase2118
1 files changed, 1061 insertions, 1057 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index cb342eef..7d7b97b7 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2266091 . 3485733144)
+(2266740 . 3485743640)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4455 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4456 . T) (-4450 . T))
+((-4456 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4457 . T) (-4451 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1395)
+(-32 R -1396)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))
+((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4458)))
+((|HasAttribute| |#1| (QUOTE -4459)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1395 UP UPUP -2078)
+(-40 -1396 UP UPUP -1510)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
-(-41 R -1395)
+((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
+(-41 R -1396)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-315))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T))
+((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4458 . T) (-4459 . T))
-((-2832 (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|))))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))))
+((-4459 . T) (-4460 . T))
+((-2833 (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|))))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1395)
+(-54 |Base| R -1396)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-61 -2040)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-61 -2039)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2040)
+(-62 -2039)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2040)
+(-63 -2039)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2040)
+(-64 -2039)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2040)
+(-65 -2039)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2040)
+(-66 -2039)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2040)
+(-67 -2039)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2040)
+(-68 -2039)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2040)
+(-69 -2039)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2040)
+(-70 -2039)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2040)
+(-71 -2039)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2040)
+(-72 -2039)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2040)
+(-73 -2039)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2040)
+(-74 -2039)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2040)
+(-77 -2039)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2040)
+(-78 -2039)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2040)
+(-79 -2039)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2040)
+(-80 -2039)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2040)
+(-81 -2039)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2040)
+(-82 -2039)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2040)
+(-83 -2039)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2040)
+(-84 -2039)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2040)
+(-85 -2039)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2040)
+(-86 -2039)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2040)
+(-87 -2039)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2040)
+(-88 -2039)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2040)
+(-89 -2039)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-372))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4458 . T))
+((-4459 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4458 . T) ((-4460 "*") . T) (-4459 . T) (-4455 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4456 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4446 . T) (-4454 . T) (-4457 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4445 . T))
+((-4459 . T) ((-4461 "*") . T) (-4460 . T) (-4456 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4457 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4455 . T) (-4458 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4446 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4460 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4461 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4458 . T))
+((-4459 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -392,22 +392,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -1395 UP)
+(-116 -1396 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-922))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1037))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1167))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-117 |#1|) (QUOTE (-923))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1038))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1168))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
+((|HasAttribute| |#1| (QUOTE -4460)))
(-120 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -418,15 +418,15 @@ NIL
NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-124)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
(-125 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -434,20 +434,20 @@ NIL
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2832 (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2833 (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -470,13 +470,13 @@ NIL
NIL
(-135)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4460 "*") . T))
+(((-4461 "*") . T))
NIL
-(-136 |minix| -4105 S T$)
+(-136 |minix| -4106 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4105 R)
+(-137 |minix| -4106 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -498,8 +498,8 @@ NIL
NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4458 . T) (-4448 . T) (-4459 . T))
-((-2832 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+((-4459 . T) (-4449 . T) (-4460 . T))
+((-2833 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-147 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -522,9 +522,9 @@ NIL
NIL
(-148)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4455 . T))
+((-4456 . T))
NIL
-(-149 -1395 UP UPUP)
+(-149 -1396 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -535,14 +535,14 @@ NIL
(-151 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasAttribute| |#1| (QUOTE -4458)))
+((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasAttribute| |#1| (QUOTE -4459)))
(-152 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-153 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4453 . T) (-4452 . T) (-4455 . T))
+((-4454 . T) (-4453 . T) (-4456 . T))
NIL
(-154)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -1395)
+(-159 R -1396)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -595,10 +595,10 @@ NIL
(-166 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))))
+((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1219))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4451 -2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4457 |has| |#1| (-6 -4457)) (-3535 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 -2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4455 |has| |#1| (-6 -4455)) (-4458 |has| |#1| (-6 -4458)) (-3536 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4451 -2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4457 |has| |#1| (-6 -4457)) (-3535 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1218)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-922))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-922))))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1075))) (-12 (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4457)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-358)))))
+((-4452 -2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4455 |has| |#1| (-6 -4455)) (-4458 |has| |#1| (-6 -4458)) (-3536 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1219)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-923))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-923))))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1219)))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1219)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4458)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-358)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -626,7 +626,7 @@ NIL
NIL
(-174)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-175)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -634,7 +634,7 @@ NIL
NIL
(-176 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4460 "*") . T) (-4451 . T) (-4456 . T) (-4450 . T) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") . T) (-4452 . T) (-4457 . T) (-4451 . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-177)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -651,7 +651,7 @@ NIL
(-180 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-965 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|))))
+((|HasCategory| (-966 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|))))
(-181 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -1395)
+(-190 R -1396)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -1395 UP UPUP R)
+(-217 -1396 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -1395 FP)
+(-218 -1396 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -1395)
+(-221 R -1396)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -826,19 +826,19 @@ NIL
NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4455 . T))
+((-4456 . T))
NIL
-(-226 R -1395)
+(-226 R -1396)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -846,23 +846,23 @@ NIL
NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-231 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-232 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))))
+((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))))
(-233 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-234 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -874,7 +874,7 @@ NIL
NIL
(-236 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-237 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -886,36 +886,36 @@ NIL
NIL
(-239)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-4455 . T))
+((-4456 . T))
NIL
(-240 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4458)))
+((|HasAttribute| |#1| (QUOTE -4459)))
(-241 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-242)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-243 S -4105 R)
+(-243 S -4106 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115))))
-(-244 -4105 R)
+((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasAttribute| |#3| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-1116))))
+(-244 -4106 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
+((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T))
NIL
-(-245 -4105 A B)
+(-245 -4106 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-246 -4105 R)
+(-246 -4106 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-247)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -926,7 +926,7 @@ NIL
NIL
(-249)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4451 . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-250 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -934,16 +934,16 @@ NIL
NIL
(-251 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-252 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-253 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-254)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -958,23 +958,23 @@ NIL
NIL
(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4455 -2832 (-2096 (|has| |#4| (-1064)) (|has| |#4| (-239))) (|has| |#4| (-6 -4455)) (-2096 (|has| |#4| (-1064)) (|has| |#4| (-913 (-1192))))) (-4452 |has| |#4| (-1064)) (-4453 |has| |#4| (-1064)) ((-4460 "*") |has| |#4| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (QUOTE (-803))) (-2832 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-860)))) (|HasCategory| |#4| (QUOTE (-174))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-860)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#4| (QUOTE -4455)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
+((-4456 -2833 (-2095 (|has| |#4| (-1065)) (|has| |#4| (-239))) (|has| |#4| (-6 -4456)) (-2095 (|has| |#4| (-1065)) (|has| |#4| (-912 (-1193))))) (-4453 |has| |#4| (-1065)) (-4454 |has| |#4| (-1065)) ((-4461 "*") |has| |#4| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2833 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1065)))) (-2833 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (QUOTE (-803))) (-2833 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-860)))) (|HasCategory| |#4| (QUOTE (-174))) (-2833 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1065)))) (|HasCategory| |#4| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-860)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1065))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#4| (QUOTE (-1065))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1116)))) (-2833 (|HasAttribute| |#4| (QUOTE -4456)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4455 -2832 (-2096 (|has| |#3| (-1064)) (|has| |#3| (-239))) (|has| |#3| (-6 -4455)) (-2096 (|has| |#3| (-1064)) (|has| |#3| (-913 (-1192))))) (-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#3| (QUOTE -4455)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+((-4456 -2833 (-2095 (|has| |#3| (-1065)) (|has| |#3| (-239))) (|has| |#3| (-6 -4456)) (-2095 (|has| |#3| (-1065)) (|has| |#3| (-912 (-1193))))) (-4453 |has| |#3| (-1065)) (-4454 |has| |#3| (-1065)) ((-4461 "*") |has| |#3| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2833 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (-2833 (|HasAttribute| |#3| (QUOTE -4456)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-239))))
(-260 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
(-261 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
(-262)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -1014,8 +1014,8 @@ NIL
NIL
(-271 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-272 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1060,11 +1060,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-283 R -1395)
+(-283 R -1396)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-284 R -1395)
+(-284 R -1396)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1087,10 +1087,10 @@ NIL
(-289 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))))
+((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))))
(-290 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-291 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1111,18 +1111,18 @@ NIL
(-295 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
+((|HasAttribute| |#1| (QUOTE -4460)))
(-296 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-297 S R |Mod| -2432 -4297 |exactQuo|)
+(-297 S R |Mod| -3607 -3404 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-298)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4451 . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-299)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1138,21 +1138,21 @@ NIL
NIL
(-302 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4455 -2832 (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4452 |has| |#1| (-1064)) (-4453 |has| |#1| (-1064)))
-((|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-1115)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-736))))
+((-4456 -2833 (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4453 |has| |#1| (-1065)) (-4454 |has| |#1| (-1065)))
+((|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-1116)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1128)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-736))))
(-303 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-304)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-305 -1395 S)
+(-305 -1396 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-306 E -1395)
+(-306 E -1396)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1167,7 +1167,7 @@ NIL
(-309 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1064))))
+((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1065))))
(-310)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1190,7 +1190,7 @@ NIL
NIL
(-315)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-316 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1200,7 +1200,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-318 -1395)
+(-318 -1396)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1214,8 +1214,8 @@ NIL
NIL
(-321 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1037))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1167))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146)))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146))))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1038))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1168))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146)))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146))))))
(-322 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1226,9 +1226,9 @@ NIL
NIL
(-324 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4455 -2832 (-12 (|has| |#1| (-566)) (-2832 (|has| |#1| (-1064)) (|has| |#1| (-483)))) (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566)))
-((-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-1064))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1127)))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574)))))
-(-325 R -1395)
+((-4456 -2833 (-12 (|has| |#1| (-566)) (-2833 (|has| |#1| (-1065)) (|has| |#1| (-483)))) (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566)))
+((-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-1065))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1128)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1128)))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
+(-325 R -1396)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1238,8 +1238,8 @@ NIL
NIL
(-327 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
(-328 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1250,7 +1250,7 @@ NIL
NIL
(-330 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802))))
(-331 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1266,19 +1266,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
(-334 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-335 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-336 S -1395)
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-336 S -1396)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-377))))
-(-337 -1395)
+(-337 -1396)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-338)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1300,54 +1300,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-343 S -1395 UP UPUP R)
+(-343 S -1396 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-344 -1395 UP UPUP R)
+(-344 -1396 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-345 -1395 UP UPUP R)
+(-345 -1396 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-346 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))))
(-347 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-348 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574)))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
(-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-350 S -1395 UP UPUP)
+(-350 S -1396 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372))))
-(-351 -1395 UP UPUP)
+(-351 -1396 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-352 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
(-353 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
(-354 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
(-355 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1362,33 +1362,33 @@ NIL
NIL
(-358)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-359 R UP -1395)
+(-359 R UP -1396)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-360 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
(-361 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
(-362 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
(-363 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
(-364 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-365 -1395 GF)
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+(-365 -1396 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1396,21 +1396,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-367 -1395 FP FPP)
+(-367 -1396 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-368 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
(-369 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-370 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-371 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1418,7 +1418,7 @@ NIL
NIL
(-372)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-373 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1434,7 +1434,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-566))))
(-376 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T))
+((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
NIL
(-377)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1446,7 +1446,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372))))
(-379 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-380 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1455,14 +1455,14 @@ NIL
(-381 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))))
+((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))))
(-382 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4458 . T))
+((-4459 . T))
NIL
(-383 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
NIL
(-384 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1482,7 +1482,7 @@ NIL
NIL
(-388)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4441 . T) (-4449 . T) (-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4442 . T) (-4450 . T) (-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-389 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1490,11 +1490,11 @@ NIL
NIL
(-390 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))))
(-391 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-392)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1506,7 +1506,7 @@ NIL
NIL
(-394 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))))
(-395 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1518,7 +1518,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-860))))
(-397)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-398)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1530,13 +1530,13 @@ NIL
NIL
(-400 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-401)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-402 -1395 UP UPUP R)
+(-402 -1396 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1560,11 +1560,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-408 -2040 |returnType| -1573 |symbols|)
+(-408 -2039 |returnType| -1572 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-409 -1395 UP)
+(-409 -1396 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1578,15 +1578,15 @@ NIL
NIL
(-412)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-413 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4449)))
+((|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#1| (QUOTE -4450)))
(-414)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-415 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1598,20 +1598,20 @@ NIL
NIL
(-417 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4445 -12 (|has| |#1| (-6 -4456)) (|has| |#1| (-462)) (|has| |#1| (-6 -4445))) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-830))) (-2832 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-4446 -12 (|has| |#1| (-6 -4457)) (|has| |#1| (-462)) (|has| |#1| (-6 -4446))) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-830))) (-2833 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-418 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-419 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-420 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))
+((|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))
(-421 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1620,14 +1620,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-423 R -1395 UP A)
+(-423 R -1396 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4455 . T))
+((-4456 . T))
NIL
-(-424 R -1395 UP A |ibasis|)
+(-424 R -1396 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1053) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -1054) (|devaluate| |#2|))))
(-425 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1638,12 +1638,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-372))))
(-427 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T))
+((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
NIL
(-428 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1237))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1237)))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462))))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1238))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1238)))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462))))
(-429 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
@@ -1670,37 +1670,37 @@ NIL
((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
(-435 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4458 . T) (-4448 . T) (-4459 . T))
+((-4459 . T) (-4449 . T) (-4460 . T))
NIL
-(-436 R -1395)
+(-436 R -1396)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-437 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4445 -12 (|has| |#1| (-6 -4445)) (|has| |#2| (-6 -4445))) (-4452 . T) (-4453 . T) (-4455 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#2| (QUOTE -4445))))
-(-438 R -1395)
+((-4446 -12 (|has| |#1| (-6 -4446)) (|has| |#2| (-6 -4446))) (-4453 . T) (-4454 . T) (-4456 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#2| (QUOTE -4446))))
+(-438 R -1396)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-439 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
+((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
(-440 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4455 -2832 (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566)))
+((-4456 -2833 (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566)))
NIL
-(-441 R -1395)
+(-441 R -1396)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-442 R -1395)
+(-442 R -1396)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-443 R -1395)
+(-443 R -1396)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1708,10 +1708,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-445 R -1395 UP)
+(-445 R -1396 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-48)))))
+((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-48)))))
(-446)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1740,7 +1740,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-453 R UP -1395)
+(-453 R UP -1396)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1778,16 +1778,16 @@ NIL
NIL
(-462)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-463 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4455 |has| (-417 (-965 |#1|)) (-566)) (-4453 . T) (-4452 . T))
-((|HasCategory| (-417 (-965 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-965 |#1|)) (QUOTE (-566))))
+((-4456 |has| (-417 (-966 |#1|)) (-566)) (-4454 . T) (-4453 . T))
+((|HasCategory| (-417 (-966 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-966 |#1|)) (QUOTE (-566))))
(-464 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-465 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1814,7 +1814,7 @@ NIL
NIL
(-471 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-472 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1822,8 +1822,8 @@ NIL
NIL
(-473 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
(-474 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1852,7 +1852,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-481 |lv| -1395 R)
+(-481 |lv| -1396 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1862,23 +1862,23 @@ NIL
NIL
(-483)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-484 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
(-485 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))))
+((-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))))
(-486 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
(-487)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-488)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1886,29 +1886,29 @@ NIL
NIL
(-489 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-490)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-491 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-492 -4105 S)
+(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-492 -4106 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-493)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-494 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-495 -1395 UP UPUP R)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-495 -1396 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1918,12 +1918,12 @@ NIL
NIL
(-497)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
(-498 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))
+((|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))
(-499 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1944,34 +1944,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-504 -1395 UP |AlExt| |AlPol|)
+(-504 -1396 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-505)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
(-506 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-507 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-508 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-509 R UP -1395)
+(-509 R UP -1396)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-510 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
(-511 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1984,10 +1984,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-514 -1395 |Expon| |VarSet| |DPoly|)
+(-514 -1396 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1192)))))
+((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1193)))))
(-515 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -2034,36 +2034,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-802))))
(-526 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-527)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-528 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146))))
(-529 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-530 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-531 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4459)))
+((|HasAttribute| |#3| (QUOTE -4460)))
(-532 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4459)))
+((|HasAttribute| |#7| (QUOTE -4460)))
(-533 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-534)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2096,7 +2096,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-542 K -1395 |Par|)
+(-542 K -1396 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2120,7 +2120,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-548 K -1395 |Par|)
+(-548 K -1396 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2150,7 +2150,7 @@ NIL
NIL
(-555)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-556)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2170,13 +2170,13 @@ NIL
NIL
(-560 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-561 R -1395)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-561 R -1396)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-562 R0 -1395 UP UPUP R)
+(-562 R0 -1396 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2186,7 +2186,7 @@ NIL
NIL
(-564 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-565 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2194,9 +2194,9 @@ NIL
NIL
(-566)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-567 R -1395)
+(-567 R -1396)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2208,7 +2208,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-570 R -1395 L)
+(-570 R -1396 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
@@ -2216,31 +2216,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-572 -1395 UP UPUP R)
+(-572 -1396 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-573 -1395 UP)
+(-573 -1396 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-574)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4440 . T) (-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4441 . T) (-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-575)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-576 R -1395 L)
+(-576 R -1396 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
-(-577 R -1395)
+(-577 R -1396)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639)))))
-(-578 -1395 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639)))))
+(-578 -1396 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2248,27 +2248,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-580 -1395)
+(-580 -1396)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-581 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-582)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-583 R -1395)
+(-583 R -1396)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566))))
-(-584 -1395 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566))))
+(-584 -1396 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-585 R -1395)
+(-585 R -1396)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2290,21 +2290,21 @@ NIL
NIL
(-590 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-591 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
(-592)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-593 R -1395)
+(-593 R -1396)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-594 E -1395)
+(-594 E -1396)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
@@ -2312,10 +2312,10 @@ NIL
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-596 -1395)
+(-596 -1396)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4453 . T) (-4452 . T))
-((|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192)))))
+((-4454 . T) (-4453 . T))
+((|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193)))))
(-597 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2342,19 +2342,19 @@ NIL
NIL
(-603 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2832 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2833 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
(-604 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-605 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))))
(-606 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-566))))
(-607)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
@@ -2368,7 +2368,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-610 R -1395 FG)
+(-610 R -1396 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2378,12 +2378,12 @@ NIL
NIL
(-612 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-613 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-1115))))
+((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-1116))))
(-614 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2398,19 +2398,19 @@ NIL
NIL
(-617 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4455 -2832 (-2096 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T))
-((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
+((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T))
+((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
(-618 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-619 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-620 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-621 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2428,7 +2428,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-625 -1395 UP)
+(-625 -1396 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2450,20 +2450,20 @@ NIL
NIL
(-630 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-631 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-858))))
-(-632 R -1395)
+(-632 R -1396)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-633 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4455 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))
+((-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4456 . T))
+((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
(-634 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2478,7 +2478,7 @@ NIL
NIL
(-637 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-638 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2488,30 +2488,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-640 R -1395)
+(-640 R -1396)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-641 |lv| -1395)
+(-641 |lv| -1396)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-642)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1174) (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 (-52))) (QUOTE (-1115))))
+((-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1175) (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))))
(-643 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
(-644 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
NIL
(-645 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4455 -2832 (-2096 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T))
-((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
+((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T))
+((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
(-646 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
@@ -2523,7 +2523,7 @@ NIL
(-648 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2085 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
+((-2084 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
(-649 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
@@ -2546,8 +2546,8 @@ NIL
NIL
(-654 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-655 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2558,8 +2558,8 @@ NIL
NIL
(-657 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-658 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2571,39 +2571,39 @@ NIL
(-660 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
+((|HasAttribute| |#1| (QUOTE -4460)))
(-661 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-662 R -1395 L)
+(-662 R -1396 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-663 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
(-664 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
(-665 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
(-666 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-667 -1395 UP)
+(-667 -1396 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-668 A -4129)
+(-668 A -2815)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
(-669 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
@@ -2618,7 +2618,7 @@ NIL
NIL
(-672 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-801))))
(-673 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2626,7 +2626,7 @@ NIL
NIL
(-674 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174))))
(-675 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2634,13 +2634,13 @@ NIL
NIL
(-676 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-677 -1395)
+(-677 -1396)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-678 -1395 |Row| |Col| M)
+(-678 -1396 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2650,8 +2650,8 @@ NIL
NIL
(-680 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4455 . T) (-4458 . T) (-4452 . T) (-4453 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+((-4456 . T) (-4459 . T) (-4453 . T) (-4454 . T))
+((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
(-681)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2671,7 +2671,7 @@ NIL
(-685 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-686)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2715,10 +2715,10 @@ NIL
(-696 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))))
+((|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))))
(-697 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
(-698 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2726,8 +2726,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))))
(-699 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4458 . T) (-4459 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4459 . T) (-4460 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
(-700 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2736,7 +2736,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-702 S -1395 FLAF FLAS)
+(-702 S -1396 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2746,11 +2746,11 @@ NIL
NIL
(-704)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4451 . T) (-4456 |has| (-709) (-372)) (-4450 |has| (-709) (-372)) (-3535 . T) (-4457 |has| (-709) (-6 -4457)) (-4454 |has| (-709) (-6 -4454)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2832 (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-239))) (-2832 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1037))) (|HasCategory| (-709) (QUOTE (-1218))) (-12 (|HasCategory| (-709) (QUOTE (-1017))) (|HasCategory| (-709) (QUOTE (-1218)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-1218)))) (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4457)) (|HasAttribute| (-709) (QUOTE -4454)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-358)))))
+((-4452 . T) (-4457 |has| (-709) (-372)) (-4451 |has| (-709) (-372)) (-3536 . T) (-4458 |has| (-709) (-6 -4458)) (-4455 |has| (-709) (-6 -4455)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2833 (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-239))) (-2833 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1038))) (|HasCategory| (-709) (QUOTE (-1219))) (-12 (|HasCategory| (-709) (QUOTE (-1018))) (|HasCategory| (-709) (QUOTE (-1219)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-1219)))) (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4458)) (|HasAttribute| (-709) (QUOTE -4455)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-358)))))
(-705 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4459 . T))
+((-4460 . T))
NIL
(-706 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2760,13 +2760,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-708 OV E -1395 PG)
+(-708 OV E -1396 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-709)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-710 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2774,7 +2774,7 @@ NIL
NIL
(-711)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4457 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4458 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-712 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2792,7 +2792,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-716 S -3583 I)
+(-716 S -3584 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2802,7 +2802,7 @@ NIL
NIL
(-718 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-719 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2812,25 +2812,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-721 R |Mod| -2432 -4297 |exactQuo|)
+(-721 R |Mod| -3607 -3404 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-722 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-723 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-724 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
+((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-725 R |Mod| -2432 -4297 |exactQuo|)
+(-725 R |Mod| -3607 -3404 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4455 . T))
+((-4456 . T))
NIL
(-726 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2838,11 +2838,11 @@ NIL
NIL
(-727 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
-(-728 -1395)
+(-728 -1396)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-729 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2866,7 +2866,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))))
(-734 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-735 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2876,7 +2876,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-737 -1395 UP)
+(-737 -1396 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2894,8 +2894,8 @@ NIL
NIL
(-741 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-742 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2910,16 +2910,16 @@ NIL
NIL
(-745 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
+((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860))))
(-746 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4448 . T) (-4459 . T))
+((-4449 . T) (-4460 . T))
NIL
(-747 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4458 . T) (-4448 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4459 . T) (-4449 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-748)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2930,7 +2930,7 @@ NIL
NIL
(-750 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
(-751 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2946,7 +2946,7 @@ NIL
NIL
(-754 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
(-755)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -3028,11 +3028,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-775 -1395)
+(-775 -1396)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-776 P -1395)
+(-776 P -1396)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3040,7 +3040,7 @@ NIL
NIL
NIL
NIL
-(-778 UP -1395)
+(-778 UP -1396)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3054,9 +3054,9 @@ NIL
NIL
(-781)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4460 "*") . T))
+(((-4461 "*") . T))
NIL
-(-782 R -1395)
+(-782 R -1396)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3076,7 +3076,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-787 -1395 |ExtF| |SUEx| |ExtP| |n|)
+(-787 -1396 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3090,28 +3090,28 @@ NIL
NIL
(-790 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (QUOTE (-555)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (QUOTE (-555)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -1008) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-791 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-792 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-793 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
(-794 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
(-795 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-174))))
+((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-174))))
(-796)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3155,28 +3155,28 @@ NIL
(-806 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
+((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
(-807 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-808 -2832 R OS S)
+(-808 -2833 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-809 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
(-810)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-811 R -1395 L)
+(-811 R -1396 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-812 R -1395)
+(-812 R -1396)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3184,7 +3184,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-814 R -1395)
+(-814 R -1396)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3192,11 +3192,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-816 -1395 UP UPUP R)
+(-816 -1396 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-817 -1395 UP L LQ)
+(-817 -1396 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3204,41 +3204,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-819 -1395 UP L LQ)
+(-819 -1396 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-820 -1395 UP)
+(-820 -1396 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-821 -1395 L UP A LO)
+(-821 -1396 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-822 -1395 UP)
+(-822 -1396 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-823 -1395 LO)
+(-823 -1396 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-824 -1395 LODO)
+(-824 -1396 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-825 -4105 S |f|)
+(-825 -4106 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) ((-4461 "*") |has| |#2| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-826 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-827 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4460 "*") |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 |has| |#2| (-372)) (-4450 |has| |#2| (-372)) (-4455 . T) (-4453 . T) (-4452 . T))
+(((-4461 "*") |has| |#2| (-372)) (-4452 |has| |#2| (-372)) (-4457 |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 . T) (-4454 . T) (-4453 . T))
((|HasCategory| |#2| (QUOTE (-372))))
(-828 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3250,7 +3250,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-860))))
(-830)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-831)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3278,7 +3278,7 @@ NIL
NIL
(-837 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239))))
(-838)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3290,7 +3290,7 @@ NIL
NIL
(-840 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4458 . T) (-4448 . T) (-4459 . T))
+((-4459 . T) (-4449 . T) (-4460 . T))
NIL
(-841)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3302,8 +3302,8 @@ NIL
NIL
(-843 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4455 |has| |#1| (-858)))
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
+((-4456 |has| |#1| (-858)))
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
(-844 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3314,7 +3314,7 @@ NIL
NIL
(-846 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
+((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
(-847)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3342,13 +3342,13 @@ NIL
NIL
(-853 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4455 |has| |#1| (-858)))
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
+((-4456 |has| |#1| (-858)))
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
(-854)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-855 -4105 S)
+(-855 -4106 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3362,7 +3362,7 @@ NIL
NIL
(-858)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4455 . T))
+((-4456 . T))
NIL
(-859 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3378,20 +3378,20 @@ NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
(-862 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-863 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
-(-864 R |sigma| -2084)
+(-864 R |sigma| -2083)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-865 |x| R |sigma| -2084)
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
+(-865 |x| R |sigma| -2083)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372))))
+((-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372))))
(-866 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
@@ -3434,7 +3434,7 @@ NIL
NIL
(-876 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
+((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
(-877 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3446,24 +3446,24 @@ NIL
NIL
(-879 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-880 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
(-881 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-880 |#1|) (QUOTE (-922))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1037))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1167))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (|HasCategory| (-880 |#1|) (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-880 |#1|) (QUOTE (-923))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1038))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1168))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (|HasCategory| (-880 |#1|) (QUOTE (-146)))))
(-882 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (-2832 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (-2833 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-883 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))))
(-884)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3523,7 +3523,7 @@ NIL
(-898 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2085 (|HasCategory| |#2| (QUOTE (-1064)))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))
+((-12 (-2084 (|HasCategory| |#2| (QUOTE (-1065)))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))
(-899 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3532,7 +3532,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-901 R -3583)
+(-901 R -3584)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3553,18 +3553,18 @@ NIL
NIL
NIL
(-906 A T$ S)
-((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
+((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
(-907 T$ S)
-((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
+((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
(-908)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-909 UP -1395)
+(-909 UP -1396)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3576,1609 +3576,1613 @@ NIL
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-912 A S)
-((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
+(-912 S)
+((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
+((-4456 . T))
NIL
+(-913 A S)
+((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
-(-913 S)
-((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4455 . T))
NIL
(-914 S)
+((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
+NIL
+NIL
+(-915 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-915 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-916 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-916 S)
+(-917 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4455 . T))
+((-4456 . T))
NIL
-(-917 S)
+(-918 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-918 S)
+(-919 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4455 . T))
-((-2832 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860))))
-(-919 R E |VarSet| S)
+((-4456 . T))
+((-2833 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860))))
+(-920 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-920 R S)
+(-921 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-921 S)
+(-922 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-922)
+(-923)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-923 |p|)
+(-924 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
-(-924 R0 -1395 UP UPUP R)
+(-925 R0 -1396 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-925 UP UPUP R)
+(-926 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-926 UP UPUP)
+(-927 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-927 R)
+(-928 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-928 R)
+(-929 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-929 E OV R P)
+(-930 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-930)
+(-931)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-931 -1395)
+(-932 -1396)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-932 R)
+(-933 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-933)
+(-934)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-934)
+(-935)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4460 "*") . T))
+(((-4461 "*") . T))
NIL
-(-935 -1395 P)
+(-936 -1396 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-936 |xx| -1395)
+(-937 |xx| -1396)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-937 R |Var| |Expon| GR)
+(-938 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-938 S)
+(-939 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-939)
+(-940)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-940)
+(-941)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-941)
+(-942)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-942 R -1395)
+(-943 R -1396)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-943)
+(-944)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-944 S A B)
+(-945 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-945 S R -1395)
+(-946 S R -1396)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-946 I)
+(-947 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-947 S E)
+(-948 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-948 S R L)
+(-949 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-949 S E V R P)
+(-950 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|))))
-(-950 R -1395 -3583)
+(-951 R -1396 -3584)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-951 -3583)
+(-952 -3584)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-952 S R Q)
+(-953 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-953 S)
+(-954 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-954 S R P)
+(-955 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-955)
+(-956)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-956 R)
+(-957 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-957 |lv| R)
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-958 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-958 |TheField| |ThePols|)
+(-959 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-858))))
-(-959 R S)
+(-960 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-960 |x| R)
+(-961 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-961 S R E |VarSet|)
+(-962 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-922))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
-(-962 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-923))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
+(-963 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
-(-963 E V R P -1395)
+(-964 E V R P -1396)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-964 E |Vars| R P S)
+(-965 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-965 R)
+(-966 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-966 E V R P -1395)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-967 E V R P -1396)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-462))))
-(-967)
+(-968)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-968)
+(-969)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-969 R L)
+(-970 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-970 A B)
+(-971 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-971 S)
+(-972 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-972)
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-973)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-973 -1395)
+(-974 -1396)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-974 I)
+(-975 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-975)
+(-976)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-976 R E)
+(-977 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4456)))
-(-977 A B)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4457)))
+(-978 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4455 -12 (|has| |#2| (-483)) (|has| |#1| (-483))))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860)))))
-(-978)
+((-4456 -12 (|has| |#2| (-483)) (|has| |#1| (-483))))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860)))))
+(-979)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-979 T$)
+(-980 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-980 T$)
+(-981 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-981 S T$)
+(-982 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-982)
+(-983)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-983 S)
+(-984 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
-(-984 R |polR|)
+(-985 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-462))))
-(-985)
+(-986)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-986)
+(-987)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-987 S |Coef| |Expon| |Var|)
+(-988 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-988 |Coef| |Expon| |Var|)
+(-989 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-989)
+(-990)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-990 S R E |VarSet| P)
+(-991 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-566))))
-(-991 R E |VarSet| P)
+(-992 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4458 . T))
+((-4459 . T))
NIL
-(-992 R E V P)
+(-993 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462))))
-(-993 K)
+(-994 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-994 |VarSet| E RC P)
+(-995 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-995 R)
+(-996 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-996 R1 R2)
+(-997 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-997 R)
+(-998 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-998 K)
+(-999 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-999 R E OV PPR)
+(-1000 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1000 K R UP -1395)
+(-1001 K R UP -1396)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1001 |vl| |nv|)
+(-1002 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-1002 R |Var| |Expon| |Dpoly|)
+(-1003 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))))
-(-1003 R E V P TS)
+(-1004 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1004)
+(-1005)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-1005 A B R S)
+(-1006 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1006 A S)
+(-1007 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167))))
-(-1007 S)
+((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168))))
+(-1008 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1008 |n| K)
+(-1009 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1009)
+(-1010)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1010 S)
+(-1011 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
-(-1011 S R)
+(-1012 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298))))
-(-1012 R)
+((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298))))
+(-1013 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1013 QR R QS S)
+(-1014 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1014 R)
+(-1015 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555))))
-(-1015 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555))))
(-1016 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1017 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1017)
+(-1018)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1018 -1395 UP UPUP |radicnd| |n|)
+(-1019 -1396 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
-(-1019 |bb|)
+((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
+(-1020 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146)))))
-(-1020)
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
+(-1021)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1021)
+(-1022)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1022 RP)
+(-1023 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1023 S)
+(-1024 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1024 A S)
+(-1025 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-1115))))
-(-1025 S)
+((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-1116))))
+(-1026 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1026 S)
+(-1027 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1027)
+(-1028)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T))
+((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T))
NIL
-(-1028 R -1395)
+(-1029 R -1396)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1029 R -1395)
+(-1030 R -1396)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1030 -1395 UP)
+(-1031 -1396 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1031 -1395 UP)
+(-1032 -1396 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1032 S)
+(-1033 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1033 F1 UP UPUP R F2)
+(-1034 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1034)
+(-1035)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1035 |Pol|)
+(-1036 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1036 |Pol|)
+(-1037 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1037)
+(-1038)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1038)
+(-1039)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1039 |TheField|)
+(-1040 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T))
-((-2832 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574)))))
-(-1040 -1395 L)
+((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T))
+((-2833 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574)))))
+(-1041 -1396 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1041 S)
+(-1042 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1115))))
-(-1042 R E V P)
+((|HasCategory| |#1| (QUOTE (-1116))))
+(-1043 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1043 R)
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1044 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4460 "*"))))
-(-1044 R)
+((|HasAttribute| |#1| (QUOTE (-4461 "*"))))
+(-1045 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))))
-(-1045 S)
+(-1046 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1046)
+(-1047)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1047 S)
+(-1048 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1048 S)
+(-1049 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1049 -1395 |Expon| |VarSet| |FPol| |LFPol|)
+(-1050 -1396 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1050)
-((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
(-1051)
+((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1052)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1052 A S)
+(-1053 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1053 S)
+(-1054 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1054 Q R)
+(-1055 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1055)
+(-1056)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1056 UP)
+(-1057 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1057 R)
+(-1058 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1058 R)
+(-1059 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1059 T$)
+(-1060 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1060 T$)
+(-1061 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1061 R |ls|)
+(-1062 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1062)
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1063)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1063 S)
+(-1064 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1064)
+(-1065)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4455 . T))
+((-4456 . T))
NIL
-(-1065 |xx| -1395)
+(-1066 |xx| -1396)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1066 S)
+(-1067 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1067 S |m| |n| R |Row| |Col|)
+(-1068 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174))))
-(-1068 |m| |n| R |Row| |Col|)
+(-1069 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4458 . T) (-4453 . T) (-4452 . T))
+((-4459 . T) (-4454 . T) (-4453 . T))
NIL
-(-1069 |m| |n| R)
+(-1070 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4458 . T) (-4453 . T) (-4452 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1070 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4459 . T) (-4454 . T) (-4453 . T))
+((|HasCategory| |#3| (QUOTE (-174))) (-2833 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1071 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1071 R)
+(-1072 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1072 S T$)
+(-1073 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1115))))
-(-1073)
+((|HasCategory| |#1| (QUOTE (-1116))))
+(-1074)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1074 S)
+(-1075 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1075)
+(-1076)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1076 |TheField| |ThePolDom|)
+(-1077 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1077)
+(-1078)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1078)
+(-1079)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1917) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1917 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1079 S R E V)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1080 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1192)))))
-(-1080 R E V)
+((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1008) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1193)))))
+(-1081 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
-(-1081)
+(-1082)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1082 S |TheField| |ThePols|)
+(-1083 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1083 |TheField| |ThePols|)
+(-1084 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1084 R E V P TS)
+(-1085 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1085 S R E V P)
+(-1086 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1086 R E V P)
+(-1087 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1087 R E V P TS)
+(-1088 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1088)
+(-1089)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1089)
+(-1090)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1090 |f|)
+(-1091 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1091 |Base| R -1395)
+(-1092 |Base| R -1396)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1092 |Base| R -1395)
+(-1093 |Base| R -1396)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1093 R |ls|)
+(-1094 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1094 UP SAE UPA)
+(-1095 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1095 R UP M)
+(-1096 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))))
-(-1096 UP SAE UPA)
+((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))))
+(-1097 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1098)
+(-1099)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1099 S)
+(-1100 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1100)
+(-1101)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1101 R)
+(-1102 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1102 R)
+(-1103 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1103 S)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1104 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1104 R S)
+(-1105 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-858))))
-(-1105)
+(-1106)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1106 R S)
+(-1107 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1107 S)
+(-1108 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1109 |#1|) (QUOTE (-1115))))
-(-1108 S)
+((|HasCategory| (-1110 |#1|) (QUOTE (-1116))))
+(-1109 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1109 S)
+(-1110 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115))))
-(-1110 S L)
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116))))
+(-1111 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1111)
+(-1112)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1112 A S)
+(-1113 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1113 S)
+(-1114 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4448 . T))
+((-4449 . T))
NIL
-(-1114 S)
+(-1115 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1115)
+(-1116)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1116 |m| |n|)
+(-1117 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1117 S)
+(-1118 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4458 . T) (-4448 . T) (-4459 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-1118 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4459 . T) (-4449 . T) (-4460 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-1119 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1119)
+(-1120)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1120 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1121 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1121 R FS)
+(-1122 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1122 R E V P TS)
+(-1123 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1123 R E V P TS)
+(-1124 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1124 R E V P)
+(-1125 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1125)
+(-1126)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1126 S)
+(-1127 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1127)
+(-1128)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1128 |dimtot| |dim1| S)
+(-1129 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) (-4455 |has| |#3| (-6 -4455)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
-(-1129 R |x|)
+((-4453 |has| |#3| (-1065)) (-4454 |has| |#3| (-1065)) (-4456 |has| |#3| (-6 -4456)) ((-4461 "*") |has| |#3| (-174)) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2833 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-1116)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2833 (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (|HasAttribute| |#3| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+(-1130 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-462))))
-(-1130)
+(-1131)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1131 R -1395)
+(-1132 R -1396)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1132 R)
+(-1133 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1133)
+(-1134)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1134)
+(-1135)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1135)
+(-1136)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1136 S)
+(-1137 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4458 . T) (-4459 . T))
+((-4459 . T) (-4460 . T))
NIL
-(-1137 S |ndim| R |Row| |Col|)
+(-1138 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4460 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
-(-1138 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4461 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
+(-1139 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4458 . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4459 . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1139 R |Row| |Col| M)
+(-1140 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1140 R |VarSet|)
+(-1141 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1141 |Coef| |Var| SMP)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1142 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1142 R E V P)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
+(-1143 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1143 UP -1395)
+(-1144 UP -1396)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1144 R)
+(-1145 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1145 R)
+(-1146 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1146 R)
+(-1147 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1147 S A)
+(-1148 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-860))))
-(-1148 R)
+(-1149 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1149 R)
+(-1150 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1150)
+(-1151)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1151)
+(-1152)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1152)
+(-1153)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1153)
+(-1154)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1154)
+(-1155)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1155 V C)
+(-1156 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1156 V C)
+(-1157 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))) (-2832 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))))) (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1157 |ndim| R)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))) (-2833 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))))) (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1158 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4455 . T) (-4447 |has| |#2| (-6 (-4460 "*"))) (-4458 . T) (-4452 . T) (-4453 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-1158 S)
+((-4456 . T) (-4448 |has| |#2| (-6 (-4461 "*"))) (-4459 . T) (-4453 . T) (-4454 . T))
+((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-1159 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1159)
+(-1160)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1160 R E V P TS)
+(-1161 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1161 R E V P)
+(-1162 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1162 S)
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1163 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1163 A S)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1164 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1164 S)
+(-1165 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1165 |Key| |Ent| |dent|)
+(-1166 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))))
-(-1166)
+((-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))))
+(-1167)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1167)
+(-1168)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1168 |Coef|)
+(-1169 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1169 S)
+(-1170 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1170 A B)
+(-1171 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1171 A B C)
+(-1172 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1172 S)
+(-1173 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1173)
+((-4460 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1174)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1174)
+(-1175)
NIL
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
-(-1175 |Entry|)
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+(-1176 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#1|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1917 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1176 A)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1177 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-1177 |Coef|)
+(-1178 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1178 |Coef|)
+(-1179 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1179 R UP)
+(-1180 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-315))))
-(-1180 |n| R)
+(-1181 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1181 S1 S2)
+(-1182 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1182)
+(-1183)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1183 |Coef| |var| |cen|)
+(-1184 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1184 R -1395)
+(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1185 R -1396)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1185 R)
+(-1186 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1186 R S)
+(-1187 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1187 E OV R P)
+(-1188 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1188 R)
+(-1189 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1189 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1190 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
+(-1191 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
-(-1191)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
+(-1192)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1192)
+(-1193)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1193 R)
+(-1194 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1194 R)
+(-1195 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-986) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4456)))
-(-1195)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-987) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4457)))
+(-1196)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1196)
+(-1197)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1197)
+(-1198)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1198 N)
+(-1199 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1199 N)
+(-1200 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1200)
+(-1201)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1201 R)
+(-1202 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1202)
+(-1203)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1203 S)
+(-1204 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1204 S)
+(-1205 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1205 |Key| |Entry|)
+(-1206 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4458 . T) (-4459 . T))
-((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1917) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1917 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1206 S)
+((-4459 . T) (-4460 . T))
+((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1207 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1207 R)
+(-1208 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1208 S |Key| |Entry|)
+(-1209 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1209 |Key| |Entry|)
+(-1210 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4459 . T))
+((-4460 . T))
NIL
-(-1210 |Key| |Entry|)
+(-1211 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1211)
+(-1212)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1212 S)
+(-1213 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1213)
+(-1214)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1214)
+(-1215)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1215 R)
+(-1216 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1216)
+(-1217)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1217 S)
+(-1218 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1218)
+(-1219)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1219 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
(-1220 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1221 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1221)
+(-1222)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1222 R -1395)
+(-1223 R -1396)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1223 R |Row| |Col| M)
+(-1224 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1224 R -1395)
+(-1225 R -1396)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|)))))
-(-1225 S R E V P)
+(-1226 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-377))))
-(-1226 R E V P)
+(-1227 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1227 |Coef|)
+(-1228 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1228 |Curve|)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
+(-1229 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1229)
+(-1230)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1230 S)
+(-1231 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1231 -1395)
+((|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1232 -1396)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1232)
+(-1233)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1233)
+(-1234)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1234 S)
+(-1235 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-860))))
-(-1235)
+(-1236)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1236 S)
+(-1237 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1237)
+(-1238)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1238)
+(-1239)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1239)
+(-1240)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1240)
+(-1241)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1241)
+(-1242)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1242 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1243 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1243 |Coef|)
+(-1244 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1244 S |Coef| UTS)
+(-1245 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
-(-1245 |Coef| UTS)
+(-1246 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1246 |Coef| UTS)
+(-1247 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2832 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-922))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
-(-1247 |Coef| |var| |cen|)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2833 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-923))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
+(-1248 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1248 ZP)
+(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1249 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1249 R S)
+(-1250 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-858))))
-(-1250 S)
+(-1251 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115))))
-(-1251 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116))))
+(-1252 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1252 R Q UP)
+(-1253 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1253 R UP)
+(-1254 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1254 R UP)
+(-1255 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1255 R U)
+(-1256 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1256 |x| R)
+(-1257 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4454 |has| |#2| (-372)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-1257 R PR S PS)
+(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4455 |has| |#2| (-372)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-1258 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1258 S R)
+(-1259 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1167))))
-(-1259 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1168))))
+(-1260 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
-(-1260 S |Coef| |Expon|)
+(-1261 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1127))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2950) (LIST (|devaluate| |#2|) (QUOTE (-1192))))))
-(-1261 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1128))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2951) (LIST (|devaluate| |#2|) (QUOTE (-1193))))))
+(-1262 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1262 RC P)
+(-1263 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1263 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1264 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1264 |Coef|)
+(-1265 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1265 S |Coef| ULS)
+(-1266 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1266 |Coef| ULS)
+(-1267 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1267 |Coef| ULS)
+(-1268 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-1268 |Coef| |var| |cen|)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+(-1269 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
-(-1269 R FE |var| |cen|)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
+(-1270 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4460 "*") |has| (-1268 |#2| |#3| |#4|) (-174)) (-4451 |has| (-1268 |#2| |#3| |#4|) (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-174))) (-2832 (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-566))))
-(-1270 A S)
+(((-4461 "*") |has| (-1269 |#2| |#3| |#4|) (-174)) (-4452 |has| (-1269 |#2| |#3| |#4|) (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-174))) (-2833 (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-566))))
+(-1271 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
-(-1271 S)
+((|HasAttribute| |#1| (QUOTE -4460)))
+(-1272 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1272 |Coef1| |Coef2| UTS1 UTS2)
+(-1273 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1273 S |Coef|)
+(-1274 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasSignature| |#2| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1578) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
-(-1274 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1219))) (|HasSignature| |#2| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3342) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
+(-1275 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1275 |Coef| |var| |cen|)
+(-1276 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
-(-1276 |Coef| UTS)
+(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3342) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
+(-1277 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1277 -1395 UP L UTS)
+(-1278 -1396 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-566))))
-(-1278)
+(-1279)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1279 |sym|)
+(-1280 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1280 S R)
+(-1281 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1281 R)
+((|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1282 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4459 . T) (-4458 . T))
+((-4460 . T) (-4459 . T))
NIL
-(-1282 A B)
+(-1283 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1283 R)
+(-1284 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4459 . T) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-1284)
+((-4460 . T) (-4459 . T))
+((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+(-1285)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1285)
+(-1286)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1286)
+(-1287)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1287)
+(-1288)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1288)
+(-1289)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1289 A S)
+(-1290 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1290 S)
+(-1291 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4453 . T) (-4452 . T))
+((-4454 . T) (-4453 . T))
NIL
-(-1291 R)
+(-1292 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1292 K R UP -1395)
+(-1293 K R UP -1396)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1293)
+(-1294)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1294)
+(-1295)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1295 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1296 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
+((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1296 R E V P)
+(-1297 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4459 . T) (-4458 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1297 R)
+((-4460 . T) (-4459 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
+(-1298 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4452 . T) (-4453 . T) (-4455 . T))
+((-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1298 |vl| R)
+(-1299 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4455 . T) (-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451)))
-(-1299 R |VarSet| XPOLY)
+((-4456 . T) (-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452)))
+(-1300 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1300 |vl| R)
+(-1301 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T))
+((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
-(-1301 S -1395)
+(-1302 S -1396)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1302 -1395)
+(-1303 -1396)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
-(-1303 |VarSet| R)
+(-1304 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4451)))
-(-1304 |vl| R)
+((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4452)))
+(-1305 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T))
+((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
NIL
-(-1305 R)
+(-1306 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4451)))
-(-1306 R E)
+((-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4452)))
+(-1307 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4455 . T) (-4456 |has| |#1| (-6 -4456)) (-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4451)))
-(-1307 |VarSet| R)
+((-4456 . T) (-4457 |has| |#1| (-6 -4457)) (-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4452)))
+(-1308 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451)))
-(-1308)
+((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452)))
+(-1309)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1309 A)
+(-1310 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1310 R |ls| |ls2|)
+(-1311 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1311 R)
+(-1312 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1312 |p|)
+(-1313 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
+(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
NIL
NIL
NIL
@@ -5196,4 +5200,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2266071 2266076 2266081 2266086) (-2 NIL 2266051 2266056 2266061 2266066) (-1 NIL 2266031 2266036 2266041 2266046) (0 NIL 2266011 2266016 2266021 2266026) (-1312 "ZMOD.spad" 2265820 2265833 2265949 2266006) (-1311 "ZLINDEP.spad" 2264886 2264897 2265810 2265815) (-1310 "ZDSOLVE.spad" 2254831 2254853 2264876 2264881) (-1309 "YSTREAM.spad" 2254326 2254337 2254821 2254826) (-1308 "YDIAGRAM.spad" 2253960 2253969 2254316 2254321) (-1307 "XRPOLY.spad" 2253180 2253200 2253816 2253885) (-1306 "XPR.spad" 2250975 2250988 2252898 2252997) (-1305 "XPOLY.spad" 2250530 2250541 2250831 2250900) (-1304 "XPOLYC.spad" 2249849 2249865 2250456 2250525) (-1303 "XPBWPOLY.spad" 2248286 2248306 2249629 2249698) (-1302 "XF.spad" 2246749 2246764 2248188 2248281) (-1301 "XF.spad" 2245192 2245209 2246633 2246638) (-1300 "XFALG.spad" 2242240 2242256 2245118 2245187) (-1299 "XEXPPKG.spad" 2241491 2241517 2242230 2242235) (-1298 "XDPOLY.spad" 2241105 2241121 2241347 2241416) (-1297 "XALG.spad" 2240765 2240776 2241061 2241100) (-1296 "WUTSET.spad" 2236604 2236621 2240411 2240438) (-1295 "WP.spad" 2235803 2235847 2236462 2236529) (-1294 "WHILEAST.spad" 2235601 2235610 2235793 2235798) (-1293 "WHEREAST.spad" 2235272 2235281 2235591 2235596) (-1292 "WFFINTBS.spad" 2232935 2232957 2235262 2235267) (-1291 "WEIER.spad" 2231157 2231168 2232925 2232930) (-1290 "VSPACE.spad" 2230830 2230841 2231125 2231152) (-1289 "VSPACE.spad" 2230523 2230536 2230820 2230825) (-1288 "VOID.spad" 2230200 2230209 2230513 2230518) (-1287 "VIEW.spad" 2227880 2227889 2230190 2230195) (-1286 "VIEWDEF.spad" 2223081 2223090 2227870 2227875) (-1285 "VIEW3D.spad" 2207042 2207051 2223071 2223076) (-1284 "VIEW2D.spad" 2194933 2194942 2207032 2207037) (-1283 "VECTOR.spad" 2193607 2193618 2193858 2193885) (-1282 "VECTOR2.spad" 2192246 2192259 2193597 2193602) (-1281 "VECTCAT.spad" 2190150 2190161 2192214 2192241) (-1280 "VECTCAT.spad" 2187861 2187874 2189927 2189932) (-1279 "VARIABLE.spad" 2187641 2187656 2187851 2187856) (-1278 "UTYPE.spad" 2187285 2187294 2187631 2187636) (-1277 "UTSODETL.spad" 2186580 2186604 2187241 2187246) (-1276 "UTSODE.spad" 2184796 2184816 2186570 2186575) (-1275 "UTS.spad" 2179600 2179628 2183263 2183360) (-1274 "UTSCAT.spad" 2177079 2177095 2179498 2179595) (-1273 "UTSCAT.spad" 2174202 2174220 2176623 2176628) (-1272 "UTS2.spad" 2173797 2173832 2174192 2174197) (-1271 "URAGG.spad" 2168470 2168481 2173787 2173792) (-1270 "URAGG.spad" 2163107 2163120 2168426 2168431) (-1269 "UPXSSING.spad" 2160752 2160778 2162188 2162321) (-1268 "UPXS.spad" 2157906 2157934 2158884 2159033) (-1267 "UPXSCONS.spad" 2155665 2155685 2156038 2156187) (-1266 "UPXSCCA.spad" 2154236 2154256 2155511 2155660) (-1265 "UPXSCCA.spad" 2152949 2152971 2154226 2154231) (-1264 "UPXSCAT.spad" 2151538 2151554 2152795 2152944) (-1263 "UPXS2.spad" 2151081 2151134 2151528 2151533) (-1262 "UPSQFREE.spad" 2149495 2149509 2151071 2151076) (-1261 "UPSCAT.spad" 2147282 2147306 2149393 2149490) (-1260 "UPSCAT.spad" 2144775 2144801 2146888 2146893) (-1259 "UPOLYC.spad" 2139815 2139826 2144617 2144770) (-1258 "UPOLYC.spad" 2134747 2134760 2139551 2139556) (-1257 "UPOLYC2.spad" 2134218 2134237 2134737 2134742) (-1256 "UP.spad" 2131417 2131432 2131804 2131957) (-1255 "UPMP.spad" 2130317 2130330 2131407 2131412) (-1254 "UPDIVP.spad" 2129882 2129896 2130307 2130312) (-1253 "UPDECOMP.spad" 2128127 2128141 2129872 2129877) (-1252 "UPCDEN.spad" 2127336 2127352 2128117 2128122) (-1251 "UP2.spad" 2126700 2126721 2127326 2127331) (-1250 "UNISEG.spad" 2126053 2126064 2126619 2126624) (-1249 "UNISEG2.spad" 2125550 2125563 2126009 2126014) (-1248 "UNIFACT.spad" 2124653 2124665 2125540 2125545) (-1247 "ULS.spad" 2115211 2115239 2116298 2116727) (-1246 "ULSCONS.spad" 2107607 2107627 2107977 2108126) (-1245 "ULSCCAT.spad" 2105344 2105364 2107453 2107602) (-1244 "ULSCCAT.spad" 2103189 2103211 2105300 2105305) (-1243 "ULSCAT.spad" 2101421 2101437 2103035 2103184) (-1242 "ULS2.spad" 2100935 2100988 2101411 2101416) (-1241 "UINT8.spad" 2100812 2100821 2100925 2100930) (-1240 "UINT64.spad" 2100688 2100697 2100802 2100807) (-1239 "UINT32.spad" 2100564 2100573 2100678 2100683) (-1238 "UINT16.spad" 2100440 2100449 2100554 2100559) (-1237 "UFD.spad" 2099505 2099514 2100366 2100435) (-1236 "UFD.spad" 2098632 2098643 2099495 2099500) (-1235 "UDVO.spad" 2097513 2097522 2098622 2098627) (-1234 "UDPO.spad" 2095006 2095017 2097469 2097474) (-1233 "TYPE.spad" 2094938 2094947 2094996 2095001) (-1232 "TYPEAST.spad" 2094857 2094866 2094928 2094933) (-1231 "TWOFACT.spad" 2093509 2093524 2094847 2094852) (-1230 "TUPLE.spad" 2092995 2093006 2093408 2093413) (-1229 "TUBETOOL.spad" 2089862 2089871 2092985 2092990) (-1228 "TUBE.spad" 2088509 2088526 2089852 2089857) (-1227 "TS.spad" 2087108 2087124 2088074 2088171) (-1226 "TSETCAT.spad" 2074235 2074252 2087076 2087103) (-1225 "TSETCAT.spad" 2061348 2061367 2074191 2074196) (-1224 "TRMANIP.spad" 2055714 2055731 2061054 2061059) (-1223 "TRIMAT.spad" 2054677 2054702 2055704 2055709) (-1222 "TRIGMNIP.spad" 2053204 2053221 2054667 2054672) (-1221 "TRIGCAT.spad" 2052716 2052725 2053194 2053199) (-1220 "TRIGCAT.spad" 2052226 2052237 2052706 2052711) (-1219 "TREE.spad" 2050801 2050812 2051833 2051860) (-1218 "TRANFUN.spad" 2050640 2050649 2050791 2050796) (-1217 "TRANFUN.spad" 2050477 2050488 2050630 2050635) (-1216 "TOPSP.spad" 2050151 2050160 2050467 2050472) (-1215 "TOOLSIGN.spad" 2049814 2049825 2050141 2050146) (-1214 "TEXTFILE.spad" 2048375 2048384 2049804 2049809) (-1213 "TEX.spad" 2045521 2045530 2048365 2048370) (-1212 "TEX1.spad" 2045077 2045088 2045511 2045516) (-1211 "TEMUTL.spad" 2044632 2044641 2045067 2045072) (-1210 "TBCMPPK.spad" 2042725 2042748 2044622 2044627) (-1209 "TBAGG.spad" 2041775 2041798 2042705 2042720) (-1208 "TBAGG.spad" 2040833 2040858 2041765 2041770) (-1207 "TANEXP.spad" 2040241 2040252 2040823 2040828) (-1206 "TALGOP.spad" 2039965 2039976 2040231 2040236) (-1205 "TABLE.spad" 2038376 2038399 2038646 2038673) (-1204 "TABLEAU.spad" 2037857 2037868 2038366 2038371) (-1203 "TABLBUMP.spad" 2034660 2034671 2037847 2037852) (-1202 "SYSTEM.spad" 2033888 2033897 2034650 2034655) (-1201 "SYSSOLP.spad" 2031371 2031382 2033878 2033883) (-1200 "SYSPTR.spad" 2031270 2031279 2031361 2031366) (-1199 "SYSNNI.spad" 2030452 2030463 2031260 2031265) (-1198 "SYSINT.spad" 2029856 2029867 2030442 2030447) (-1197 "SYNTAX.spad" 2026062 2026071 2029846 2029851) (-1196 "SYMTAB.spad" 2024130 2024139 2026052 2026057) (-1195 "SYMS.spad" 2020153 2020162 2024120 2024125) (-1194 "SYMPOLY.spad" 2019160 2019171 2019242 2019369) (-1193 "SYMFUNC.spad" 2018661 2018672 2019150 2019155) (-1192 "SYMBOL.spad" 2016164 2016173 2018651 2018656) (-1191 "SWITCH.spad" 2012935 2012944 2016154 2016159) (-1190 "SUTS.spad" 2009840 2009868 2011402 2011499) (-1189 "SUPXS.spad" 2006981 2007009 2007972 2008121) (-1188 "SUP.spad" 2003794 2003805 2004567 2004720) (-1187 "SUPFRACF.spad" 2002899 2002917 2003784 2003789) (-1186 "SUP2.spad" 2002291 2002304 2002889 2002894) (-1185 "SUMRF.spad" 2001265 2001276 2002281 2002286) (-1184 "SUMFS.spad" 2000902 2000919 2001255 2001260) (-1183 "SULS.spad" 1991447 1991475 1992547 1992976) (-1182 "SUCHTAST.spad" 1991216 1991225 1991437 1991442) (-1181 "SUCH.spad" 1990898 1990913 1991206 1991211) (-1180 "SUBSPACE.spad" 1983013 1983028 1990888 1990893) (-1179 "SUBRESP.spad" 1982183 1982197 1982969 1982974) (-1178 "STTF.spad" 1978282 1978298 1982173 1982178) (-1177 "STTFNC.spad" 1974750 1974766 1978272 1978277) (-1176 "STTAYLOR.spad" 1967385 1967396 1974631 1974636) (-1175 "STRTBL.spad" 1965890 1965907 1966039 1966066) (-1174 "STRING.spad" 1965299 1965308 1965313 1965340) (-1173 "STRICAT.spad" 1965087 1965096 1965267 1965294) (-1172 "STREAM.spad" 1962005 1962016 1964612 1964627) (-1171 "STREAM3.spad" 1961578 1961593 1961995 1962000) (-1170 "STREAM2.spad" 1960706 1960719 1961568 1961573) (-1169 "STREAM1.spad" 1960412 1960423 1960696 1960701) (-1168 "STINPROD.spad" 1959348 1959364 1960402 1960407) (-1167 "STEP.spad" 1958549 1958558 1959338 1959343) (-1166 "STEPAST.spad" 1957783 1957792 1958539 1958544) (-1165 "STBL.spad" 1956309 1956337 1956476 1956491) (-1164 "STAGG.spad" 1955384 1955395 1956299 1956304) (-1163 "STAGG.spad" 1954457 1954470 1955374 1955379) (-1162 "STACK.spad" 1953814 1953825 1954064 1954091) (-1161 "SREGSET.spad" 1951518 1951535 1953460 1953487) (-1160 "SRDCMPK.spad" 1950079 1950099 1951508 1951513) (-1159 "SRAGG.spad" 1945222 1945231 1950047 1950074) (-1158 "SRAGG.spad" 1940385 1940396 1945212 1945217) (-1157 "SQMATRIX.spad" 1938057 1938075 1938973 1939060) (-1156 "SPLTREE.spad" 1932609 1932622 1937493 1937520) (-1155 "SPLNODE.spad" 1929197 1929210 1932599 1932604) (-1154 "SPFCAT.spad" 1928006 1928015 1929187 1929192) (-1153 "SPECOUT.spad" 1926558 1926567 1927996 1928001) (-1152 "SPADXPT.spad" 1918153 1918162 1926548 1926553) (-1151 "spad-parser.spad" 1917618 1917627 1918143 1918148) (-1150 "SPADAST.spad" 1917319 1917328 1917608 1917613) (-1149 "SPACEC.spad" 1901518 1901529 1917309 1917314) (-1148 "SPACE3.spad" 1901294 1901305 1901508 1901513) (-1147 "SORTPAK.spad" 1900843 1900856 1901250 1901255) (-1146 "SOLVETRA.spad" 1898606 1898617 1900833 1900838) (-1145 "SOLVESER.spad" 1897134 1897145 1898596 1898601) (-1144 "SOLVERAD.spad" 1893160 1893171 1897124 1897129) (-1143 "SOLVEFOR.spad" 1891622 1891640 1893150 1893155) (-1142 "SNTSCAT.spad" 1891222 1891239 1891590 1891617) (-1141 "SMTS.spad" 1889494 1889520 1890787 1890884) (-1140 "SMP.spad" 1886969 1886989 1887359 1887486) (-1139 "SMITH.spad" 1885814 1885839 1886959 1886964) (-1138 "SMATCAT.spad" 1883924 1883954 1885758 1885809) (-1137 "SMATCAT.spad" 1881966 1881998 1883802 1883807) (-1136 "SKAGG.spad" 1880929 1880940 1881934 1881961) (-1135 "SINT.spad" 1879869 1879878 1880795 1880924) (-1134 "SIMPAN.spad" 1879597 1879606 1879859 1879864) (-1133 "SIG.spad" 1878927 1878936 1879587 1879592) (-1132 "SIGNRF.spad" 1878045 1878056 1878917 1878922) (-1131 "SIGNEF.spad" 1877324 1877341 1878035 1878040) (-1130 "SIGAST.spad" 1876709 1876718 1877314 1877319) (-1129 "SHP.spad" 1874637 1874652 1876665 1876670) (-1128 "SHDP.spad" 1864583 1864610 1865092 1865223) (-1127 "SGROUP.spad" 1864191 1864200 1864573 1864578) (-1126 "SGROUP.spad" 1863797 1863808 1864181 1864186) (-1125 "SGCF.spad" 1856936 1856945 1863787 1863792) (-1124 "SFRTCAT.spad" 1855866 1855883 1856904 1856931) (-1123 "SFRGCD.spad" 1854929 1854949 1855856 1855861) (-1122 "SFQCMPK.spad" 1849566 1849586 1854919 1854924) (-1121 "SFORT.spad" 1849005 1849019 1849556 1849561) (-1120 "SEXOF.spad" 1848848 1848888 1848995 1849000) (-1119 "SEX.spad" 1848740 1848749 1848838 1848843) (-1118 "SEXCAT.spad" 1846521 1846561 1848730 1848735) (-1117 "SET.spad" 1844845 1844856 1845942 1845981) (-1116 "SETMN.spad" 1843295 1843312 1844835 1844840) (-1115 "SETCAT.spad" 1842617 1842626 1843285 1843290) (-1114 "SETCAT.spad" 1841937 1841948 1842607 1842612) (-1113 "SETAGG.spad" 1838486 1838497 1841917 1841932) (-1112 "SETAGG.spad" 1835043 1835056 1838476 1838481) (-1111 "SEQAST.spad" 1834746 1834755 1835033 1835038) (-1110 "SEGXCAT.spad" 1833902 1833915 1834736 1834741) (-1109 "SEG.spad" 1833715 1833726 1833821 1833826) (-1108 "SEGCAT.spad" 1832640 1832651 1833705 1833710) (-1107 "SEGBIND.spad" 1832398 1832409 1832587 1832592) (-1106 "SEGBIND2.spad" 1832096 1832109 1832388 1832393) (-1105 "SEGAST.spad" 1831810 1831819 1832086 1832091) (-1104 "SEG2.spad" 1831245 1831258 1831766 1831771) (-1103 "SDVAR.spad" 1830521 1830532 1831235 1831240) (-1102 "SDPOL.spad" 1827947 1827958 1828238 1828365) (-1101 "SCPKG.spad" 1826036 1826047 1827937 1827942) (-1100 "SCOPE.spad" 1825189 1825198 1826026 1826031) (-1099 "SCACHE.spad" 1823885 1823896 1825179 1825184) (-1098 "SASTCAT.spad" 1823794 1823803 1823875 1823880) (-1097 "SAOS.spad" 1823666 1823675 1823784 1823789) (-1096 "SAERFFC.spad" 1823379 1823399 1823656 1823661) (-1095 "SAE.spad" 1821554 1821570 1822165 1822300) (-1094 "SAEFACT.spad" 1821255 1821275 1821544 1821549) (-1093 "RURPK.spad" 1818914 1818930 1821245 1821250) (-1092 "RULESET.spad" 1818367 1818391 1818904 1818909) (-1091 "RULE.spad" 1816607 1816631 1818357 1818362) (-1090 "RULECOLD.spad" 1816459 1816472 1816597 1816602) (-1089 "RTVALUE.spad" 1816194 1816203 1816449 1816454) (-1088 "RSTRCAST.spad" 1815911 1815920 1816184 1816189) (-1087 "RSETGCD.spad" 1812289 1812309 1815901 1815906) (-1086 "RSETCAT.spad" 1802225 1802242 1812257 1812284) (-1085 "RSETCAT.spad" 1792181 1792200 1802215 1802220) (-1084 "RSDCMPK.spad" 1790633 1790653 1792171 1792176) (-1083 "RRCC.spad" 1789017 1789047 1790623 1790628) (-1082 "RRCC.spad" 1787399 1787431 1789007 1789012) (-1081 "RPTAST.spad" 1787101 1787110 1787389 1787394) (-1080 "RPOLCAT.spad" 1766461 1766476 1786969 1787096) (-1079 "RPOLCAT.spad" 1745534 1745551 1766044 1766049) (-1078 "ROUTINE.spad" 1741417 1741426 1744181 1744208) (-1077 "ROMAN.spad" 1740745 1740754 1741283 1741412) (-1076 "ROIRC.spad" 1739825 1739857 1740735 1740740) (-1075 "RNS.spad" 1738728 1738737 1739727 1739820) (-1074 "RNS.spad" 1737717 1737728 1738718 1738723) (-1073 "RNG.spad" 1737452 1737461 1737707 1737712) (-1072 "RNGBIND.spad" 1736612 1736626 1737407 1737412) (-1071 "RMODULE.spad" 1736377 1736388 1736602 1736607) (-1070 "RMCAT2.spad" 1735797 1735854 1736367 1736372) (-1069 "RMATRIX.spad" 1734621 1734640 1734964 1735003) (-1068 "RMATCAT.spad" 1730200 1730231 1734577 1734616) (-1067 "RMATCAT.spad" 1725669 1725702 1730048 1730053) (-1066 "RLINSET.spad" 1725224 1725235 1725659 1725664) (-1065 "RINTERP.spad" 1725112 1725132 1725214 1725219) (-1064 "RING.spad" 1724582 1724591 1725092 1725107) (-1063 "RING.spad" 1724060 1724071 1724572 1724577) (-1062 "RIDIST.spad" 1723452 1723461 1724050 1724055) (-1061 "RGCHAIN.spad" 1722035 1722051 1722937 1722964) (-1060 "RGBCSPC.spad" 1721816 1721828 1722025 1722030) (-1059 "RGBCMDL.spad" 1721346 1721358 1721806 1721811) (-1058 "RF.spad" 1718988 1718999 1721336 1721341) (-1057 "RFFACTOR.spad" 1718450 1718461 1718978 1718983) (-1056 "RFFACT.spad" 1718185 1718197 1718440 1718445) (-1055 "RFDIST.spad" 1717181 1717190 1718175 1718180) (-1054 "RETSOL.spad" 1716600 1716613 1717171 1717176) (-1053 "RETRACT.spad" 1716028 1716039 1716590 1716595) (-1052 "RETRACT.spad" 1715454 1715467 1716018 1716023) (-1051 "RETAST.spad" 1715266 1715275 1715444 1715449) (-1050 "RESULT.spad" 1713326 1713335 1713913 1713940) (-1049 "RESRING.spad" 1712673 1712720 1713264 1713321) (-1048 "RESLATC.spad" 1711997 1712008 1712663 1712668) (-1047 "REPSQ.spad" 1711728 1711739 1711987 1711992) (-1046 "REP.spad" 1709282 1709291 1711718 1711723) (-1045 "REPDB.spad" 1708989 1709000 1709272 1709277) (-1044 "REP2.spad" 1698647 1698658 1708831 1708836) (-1043 "REP1.spad" 1692843 1692854 1698597 1698602) (-1042 "REGSET.spad" 1690640 1690657 1692489 1692516) (-1041 "REF.spad" 1689975 1689986 1690595 1690600) (-1040 "REDORDER.spad" 1689181 1689198 1689965 1689970) (-1039 "RECLOS.spad" 1687964 1687984 1688668 1688761) (-1038 "REALSOLV.spad" 1687104 1687113 1687954 1687959) (-1037 "REAL.spad" 1686976 1686985 1687094 1687099) (-1036 "REAL0Q.spad" 1684274 1684289 1686966 1686971) (-1035 "REAL0.spad" 1681118 1681133 1684264 1684269) (-1034 "RDUCEAST.spad" 1680839 1680848 1681108 1681113) (-1033 "RDIV.spad" 1680494 1680519 1680829 1680834) (-1032 "RDIST.spad" 1680061 1680072 1680484 1680489) (-1031 "RDETRS.spad" 1678925 1678943 1680051 1680056) (-1030 "RDETR.spad" 1677064 1677082 1678915 1678920) (-1029 "RDEEFS.spad" 1676163 1676180 1677054 1677059) (-1028 "RDEEF.spad" 1675173 1675190 1676153 1676158) (-1027 "RCFIELD.spad" 1672359 1672368 1675075 1675168) (-1026 "RCFIELD.spad" 1669631 1669642 1672349 1672354) (-1025 "RCAGG.spad" 1667559 1667570 1669621 1669626) (-1024 "RCAGG.spad" 1665414 1665427 1667478 1667483) (-1023 "RATRET.spad" 1664774 1664785 1665404 1665409) (-1022 "RATFACT.spad" 1664466 1664478 1664764 1664769) (-1021 "RANDSRC.spad" 1663785 1663794 1664456 1664461) (-1020 "RADUTIL.spad" 1663541 1663550 1663775 1663780) (-1019 "RADIX.spad" 1660462 1660476 1662008 1662101) (-1018 "RADFF.spad" 1658875 1658912 1658994 1659150) (-1017 "RADCAT.spad" 1658470 1658479 1658865 1658870) (-1016 "RADCAT.spad" 1658063 1658074 1658460 1658465) (-1015 "QUEUE.spad" 1657411 1657422 1657670 1657697) (-1014 "QUAT.spad" 1655869 1655880 1656212 1656277) (-1013 "QUATCT2.spad" 1655489 1655508 1655859 1655864) (-1012 "QUATCAT.spad" 1653659 1653670 1655419 1655484) (-1011 "QUATCAT.spad" 1651580 1651593 1653342 1653347) (-1010 "QUAGG.spad" 1650407 1650418 1651548 1651575) (-1009 "QQUTAST.spad" 1650175 1650184 1650397 1650402) (-1008 "QFORM.spad" 1649793 1649808 1650165 1650170) (-1007 "QFCAT.spad" 1648495 1648506 1649695 1649788) (-1006 "QFCAT.spad" 1646788 1646801 1647990 1647995) (-1005 "QFCAT2.spad" 1646480 1646497 1646778 1646783) (-1004 "QEQUAT.spad" 1646038 1646047 1646470 1646475) (-1003 "QCMPACK.spad" 1640784 1640804 1646028 1646033) (-1002 "QALGSET.spad" 1636862 1636895 1640698 1640703) (-1001 "QALGSET2.spad" 1634857 1634876 1636852 1636857) (-1000 "PWFFINTB.spad" 1632272 1632294 1634847 1634852) (-999 "PUSHVAR.spad" 1631611 1631630 1632262 1632267) (-998 "PTRANFN.spad" 1627739 1627749 1631601 1631606) (-997 "PTPACK.spad" 1624827 1624837 1627729 1627734) (-996 "PTFUNC2.spad" 1624650 1624664 1624817 1624822) (-995 "PTCAT.spad" 1623905 1623915 1624618 1624645) (-994 "PSQFR.spad" 1623212 1623236 1623895 1623900) (-993 "PSEUDLIN.spad" 1622098 1622108 1623202 1623207) (-992 "PSETPK.spad" 1607531 1607547 1621976 1621981) (-991 "PSETCAT.spad" 1601451 1601474 1607511 1607526) (-990 "PSETCAT.spad" 1595345 1595370 1601407 1601412) (-989 "PSCURVE.spad" 1594328 1594336 1595335 1595340) (-988 "PSCAT.spad" 1593111 1593140 1594226 1594323) (-987 "PSCAT.spad" 1591984 1592015 1593101 1593106) (-986 "PRTITION.spad" 1590682 1590690 1591974 1591979) (-985 "PRTDAST.spad" 1590401 1590409 1590672 1590677) (-984 "PRS.spad" 1579963 1579980 1590357 1590362) (-983 "PRQAGG.spad" 1579398 1579408 1579931 1579958) (-982 "PROPLOG.spad" 1578970 1578978 1579388 1579393) (-981 "PROPFUN2.spad" 1578593 1578606 1578960 1578965) (-980 "PROPFUN1.spad" 1577991 1578002 1578583 1578588) (-979 "PROPFRML.spad" 1576559 1576570 1577981 1577986) (-978 "PROPERTY.spad" 1576047 1576055 1576549 1576554) (-977 "PRODUCT.spad" 1573729 1573741 1574013 1574068) (-976 "PR.spad" 1572121 1572133 1572820 1572947) (-975 "PRINT.spad" 1571873 1571881 1572111 1572116) (-974 "PRIMES.spad" 1570126 1570136 1571863 1571868) (-973 "PRIMELT.spad" 1568207 1568221 1570116 1570121) (-972 "PRIMCAT.spad" 1567834 1567842 1568197 1568202) (-971 "PRIMARR.spad" 1566839 1566849 1567017 1567044) (-970 "PRIMARR2.spad" 1565606 1565618 1566829 1566834) (-969 "PREASSOC.spad" 1564988 1565000 1565596 1565601) (-968 "PPCURVE.spad" 1564125 1564133 1564978 1564983) (-967 "PORTNUM.spad" 1563900 1563908 1564115 1564120) (-966 "POLYROOT.spad" 1562749 1562771 1563856 1563861) (-965 "POLY.spad" 1560084 1560094 1560599 1560726) (-964 "POLYLIFT.spad" 1559349 1559372 1560074 1560079) (-963 "POLYCATQ.spad" 1557467 1557489 1559339 1559344) (-962 "POLYCAT.spad" 1550937 1550958 1557335 1557462) (-961 "POLYCAT.spad" 1543745 1543768 1550145 1550150) (-960 "POLY2UP.spad" 1543197 1543211 1543735 1543740) (-959 "POLY2.spad" 1542794 1542806 1543187 1543192) (-958 "POLUTIL.spad" 1541735 1541764 1542750 1542755) (-957 "POLTOPOL.spad" 1540483 1540498 1541725 1541730) (-956 "POINT.spad" 1539321 1539331 1539408 1539435) (-955 "PNTHEORY.spad" 1536023 1536031 1539311 1539316) (-954 "PMTOOLS.spad" 1534798 1534812 1536013 1536018) (-953 "PMSYM.spad" 1534347 1534357 1534788 1534793) (-952 "PMQFCAT.spad" 1533938 1533952 1534337 1534342) (-951 "PMPRED.spad" 1533417 1533431 1533928 1533933) (-950 "PMPREDFS.spad" 1532871 1532893 1533407 1533412) (-949 "PMPLCAT.spad" 1531951 1531969 1532803 1532808) (-948 "PMLSAGG.spad" 1531536 1531550 1531941 1531946) (-947 "PMKERNEL.spad" 1531115 1531127 1531526 1531531) (-946 "PMINS.spad" 1530695 1530705 1531105 1531110) (-945 "PMFS.spad" 1530272 1530290 1530685 1530690) (-944 "PMDOWN.spad" 1529562 1529576 1530262 1530267) (-943 "PMASS.spad" 1528572 1528580 1529552 1529557) (-942 "PMASSFS.spad" 1527539 1527555 1528562 1528567) (-941 "PLOTTOOL.spad" 1527319 1527327 1527529 1527534) (-940 "PLOT.spad" 1522242 1522250 1527309 1527314) (-939 "PLOT3D.spad" 1518706 1518714 1522232 1522237) (-938 "PLOT1.spad" 1517863 1517873 1518696 1518701) (-937 "PLEQN.spad" 1505153 1505180 1517853 1517858) (-936 "PINTERP.spad" 1504775 1504794 1505143 1505148) (-935 "PINTERPA.spad" 1504559 1504575 1504765 1504770) (-934 "PI.spad" 1504168 1504176 1504533 1504554) (-933 "PID.spad" 1503138 1503146 1504094 1504163) (-932 "PICOERCE.spad" 1502795 1502805 1503128 1503133) (-931 "PGROEB.spad" 1501396 1501410 1502785 1502790) (-930 "PGE.spad" 1493013 1493021 1501386 1501391) (-929 "PGCD.spad" 1491903 1491920 1493003 1493008) (-928 "PFRPAC.spad" 1491052 1491062 1491893 1491898) (-927 "PFR.spad" 1487715 1487725 1490954 1491047) (-926 "PFOTOOLS.spad" 1486973 1486989 1487705 1487710) (-925 "PFOQ.spad" 1486343 1486361 1486963 1486968) (-924 "PFO.spad" 1485762 1485789 1486333 1486338) (-923 "PF.spad" 1485336 1485348 1485567 1485660) (-922 "PFECAT.spad" 1483018 1483026 1485262 1485331) (-921 "PFECAT.spad" 1480728 1480738 1482974 1482979) (-920 "PFBRU.spad" 1478616 1478628 1480718 1480723) (-919 "PFBR.spad" 1476176 1476199 1478606 1478611) (-918 "PERM.spad" 1471983 1471993 1476006 1476021) (-917 "PERMGRP.spad" 1466753 1466763 1471973 1471978) (-916 "PERMCAT.spad" 1465414 1465424 1466733 1466748) (-915 "PERMAN.spad" 1463946 1463960 1465404 1465409) (-914 "PENDTREE.spad" 1463287 1463297 1463575 1463580) (-913 "PDRING.spad" 1461838 1461848 1463267 1463282) (-912 "PDRING.spad" 1460397 1460409 1461828 1461833) (-911 "PDEPROB.spad" 1459412 1459420 1460387 1460392) (-910 "PDEPACK.spad" 1453452 1453460 1459402 1459407) (-909 "PDECOMP.spad" 1452922 1452939 1453442 1453447) (-908 "PDECAT.spad" 1451278 1451286 1452912 1452917) (-907 "PDDOM.spad" 1450744 1450757 1451268 1451273) (-906 "PDDOM.spad" 1450208 1450223 1450734 1450739) (-905 "PCOMP.spad" 1450061 1450074 1450198 1450203) (-904 "PBWLB.spad" 1448649 1448666 1450051 1450056) (-903 "PATTERN.spad" 1443188 1443198 1448639 1448644) (-902 "PATTERN2.spad" 1442926 1442938 1443178 1443183) (-901 "PATTERN1.spad" 1441262 1441278 1442916 1442921) (-900 "PATRES.spad" 1438837 1438849 1441252 1441257) (-899 "PATRES2.spad" 1438509 1438523 1438827 1438832) (-898 "PATMATCH.spad" 1436706 1436737 1438217 1438222) (-897 "PATMAB.spad" 1436135 1436145 1436696 1436701) (-896 "PATLRES.spad" 1435221 1435235 1436125 1436130) (-895 "PATAB.spad" 1434985 1434995 1435211 1435216) (-894 "PARTPERM.spad" 1432993 1433001 1434975 1434980) (-893 "PARSURF.spad" 1432427 1432455 1432983 1432988) (-892 "PARSU2.spad" 1432224 1432240 1432417 1432422) (-891 "script-parser.spad" 1431744 1431752 1432214 1432219) (-890 "PARSCURV.spad" 1431178 1431206 1431734 1431739) (-889 "PARSC2.spad" 1430969 1430985 1431168 1431173) (-888 "PARPCURV.spad" 1430431 1430459 1430959 1430964) (-887 "PARPC2.spad" 1430222 1430238 1430421 1430426) (-886 "PARAMAST.spad" 1429350 1429358 1430212 1430217) (-885 "PAN2EXPR.spad" 1428762 1428770 1429340 1429345) (-884 "PALETTE.spad" 1427732 1427740 1428752 1428757) (-883 "PAIR.spad" 1426719 1426732 1427320 1427325) (-882 "PADICRC.spad" 1424053 1424071 1425224 1425317) (-881 "PADICRAT.spad" 1422068 1422080 1422289 1422382) (-880 "PADIC.spad" 1421763 1421775 1421994 1422063) (-879 "PADICCT.spad" 1420312 1420324 1421689 1421758) (-878 "PADEPAC.spad" 1419001 1419020 1420302 1420307) (-877 "PADE.spad" 1417753 1417769 1418991 1418996) (-876 "OWP.spad" 1416993 1417023 1417611 1417678) (-875 "OVERSET.spad" 1416566 1416574 1416983 1416988) (-874 "OVAR.spad" 1416347 1416370 1416556 1416561) (-873 "OUT.spad" 1415433 1415441 1416337 1416342) (-872 "OUTFORM.spad" 1404825 1404833 1415423 1415428) (-871 "OUTBFILE.spad" 1404243 1404251 1404815 1404820) (-870 "OUTBCON.spad" 1403249 1403257 1404233 1404238) (-869 "OUTBCON.spad" 1402253 1402263 1403239 1403244) (-868 "OSI.spad" 1401728 1401736 1402243 1402248) (-867 "OSGROUP.spad" 1401646 1401654 1401718 1401723) (-866 "ORTHPOL.spad" 1400131 1400141 1401563 1401568) (-865 "OREUP.spad" 1399584 1399612 1399811 1399850) (-864 "ORESUP.spad" 1398885 1398909 1399264 1399303) (-863 "OREPCTO.spad" 1396742 1396754 1398805 1398810) (-862 "OREPCAT.spad" 1390889 1390899 1396698 1396737) (-861 "OREPCAT.spad" 1384926 1384938 1390737 1390742) (-860 "ORDSET.spad" 1384098 1384106 1384916 1384921) (-859 "ORDSET.spad" 1383268 1383278 1384088 1384093) (-858 "ORDRING.spad" 1382658 1382666 1383248 1383263) (-857 "ORDRING.spad" 1382056 1382066 1382648 1382653) (-856 "ORDMON.spad" 1381911 1381919 1382046 1382051) (-855 "ORDFUNS.spad" 1381043 1381059 1381901 1381906) (-854 "ORDFIN.spad" 1380863 1380871 1381033 1381038) (-853 "ORDCOMP.spad" 1379328 1379338 1380410 1380439) (-852 "ORDCOMP2.spad" 1378621 1378633 1379318 1379323) (-851 "OPTPROB.spad" 1377259 1377267 1378611 1378616) (-850 "OPTPACK.spad" 1369668 1369676 1377249 1377254) (-849 "OPTCAT.spad" 1367347 1367355 1369658 1369663) (-848 "OPSIG.spad" 1367001 1367009 1367337 1367342) (-847 "OPQUERY.spad" 1366550 1366558 1366991 1366996) (-846 "OP.spad" 1366292 1366302 1366372 1366439) (-845 "OPERCAT.spad" 1365758 1365768 1366282 1366287) (-844 "OPERCAT.spad" 1365222 1365234 1365748 1365753) (-843 "ONECOMP.spad" 1363967 1363977 1364769 1364798) (-842 "ONECOMP2.spad" 1363391 1363403 1363957 1363962) (-841 "OMSERVER.spad" 1362397 1362405 1363381 1363386) (-840 "OMSAGG.spad" 1362185 1362195 1362353 1362392) (-839 "OMPKG.spad" 1360801 1360809 1362175 1362180) (-838 "OM.spad" 1359774 1359782 1360791 1360796) (-837 "OMLO.spad" 1359199 1359211 1359660 1359699) (-836 "OMEXPR.spad" 1359033 1359043 1359189 1359194) (-835 "OMERR.spad" 1358578 1358586 1359023 1359028) (-834 "OMERRK.spad" 1357612 1357620 1358568 1358573) (-833 "OMENC.spad" 1356956 1356964 1357602 1357607) (-832 "OMDEV.spad" 1351265 1351273 1356946 1356951) (-831 "OMCONN.spad" 1350674 1350682 1351255 1351260) (-830 "OINTDOM.spad" 1350437 1350445 1350600 1350669) (-829 "OFMONOID.spad" 1348560 1348570 1350393 1350398) (-828 "ODVAR.spad" 1347821 1347831 1348550 1348555) (-827 "ODR.spad" 1347465 1347491 1347633 1347782) (-826 "ODPOL.spad" 1344847 1344857 1345187 1345314) (-825 "ODP.spad" 1334929 1334949 1335302 1335433) (-824 "ODETOOLS.spad" 1333578 1333597 1334919 1334924) (-823 "ODESYS.spad" 1331272 1331289 1333568 1333573) (-822 "ODERTRIC.spad" 1327281 1327298 1331229 1331234) (-821 "ODERED.spad" 1326680 1326704 1327271 1327276) (-820 "ODERAT.spad" 1324295 1324312 1326670 1326675) (-819 "ODEPRRIC.spad" 1321332 1321354 1324285 1324290) (-818 "ODEPROB.spad" 1320589 1320597 1321322 1321327) (-817 "ODEPRIM.spad" 1317923 1317945 1320579 1320584) (-816 "ODEPAL.spad" 1317309 1317333 1317913 1317918) (-815 "ODEPACK.spad" 1303975 1303983 1317299 1317304) (-814 "ODEINT.spad" 1303410 1303426 1303965 1303970) (-813 "ODEIFTBL.spad" 1300805 1300813 1303400 1303405) (-812 "ODEEF.spad" 1296296 1296312 1300795 1300800) (-811 "ODECONST.spad" 1295833 1295851 1296286 1296291) (-810 "ODECAT.spad" 1294431 1294439 1295823 1295828) (-809 "OCT.spad" 1292567 1292577 1293281 1293320) (-808 "OCTCT2.spad" 1292213 1292234 1292557 1292562) (-807 "OC.spad" 1290009 1290019 1292169 1292208) (-806 "OC.spad" 1287530 1287542 1289692 1289697) (-805 "OCAMON.spad" 1287378 1287386 1287520 1287525) (-804 "OASGP.spad" 1287193 1287201 1287368 1287373) (-803 "OAMONS.spad" 1286715 1286723 1287183 1287188) (-802 "OAMON.spad" 1286576 1286584 1286705 1286710) (-801 "OAGROUP.spad" 1286438 1286446 1286566 1286571) (-800 "NUMTUBE.spad" 1286029 1286045 1286428 1286433) (-799 "NUMQUAD.spad" 1274005 1274013 1286019 1286024) (-798 "NUMODE.spad" 1265359 1265367 1273995 1274000) (-797 "NUMINT.spad" 1262925 1262933 1265349 1265354) (-796 "NUMFMT.spad" 1261765 1261773 1262915 1262920) (-795 "NUMERIC.spad" 1253879 1253889 1261570 1261575) (-794 "NTSCAT.spad" 1252387 1252403 1253847 1253874) (-793 "NTPOLFN.spad" 1251938 1251948 1252304 1252309) (-792 "NSUP.spad" 1244984 1244994 1249524 1249677) (-791 "NSUP2.spad" 1244376 1244388 1244974 1244979) (-790 "NSMP.spad" 1240606 1240625 1240914 1241041) (-789 "NREP.spad" 1238984 1238998 1240596 1240601) (-788 "NPCOEF.spad" 1238230 1238250 1238974 1238979) (-787 "NORMRETR.spad" 1237828 1237867 1238220 1238225) (-786 "NORMPK.spad" 1235730 1235749 1237818 1237823) (-785 "NORMMA.spad" 1235418 1235444 1235720 1235725) (-784 "NONE.spad" 1235159 1235167 1235408 1235413) (-783 "NONE1.spad" 1234835 1234845 1235149 1235154) (-782 "NODE1.spad" 1234322 1234338 1234825 1234830) (-781 "NNI.spad" 1233217 1233225 1234296 1234317) (-780 "NLINSOL.spad" 1231843 1231853 1233207 1233212) (-779 "NIPROB.spad" 1230384 1230392 1231833 1231838) (-778 "NFINTBAS.spad" 1227944 1227961 1230374 1230379) (-777 "NETCLT.spad" 1227918 1227929 1227934 1227939) (-776 "NCODIV.spad" 1226134 1226150 1227908 1227913) (-775 "NCNTFRAC.spad" 1225776 1225790 1226124 1226129) (-774 "NCEP.spad" 1223942 1223956 1225766 1225771) (-773 "NASRING.spad" 1223538 1223546 1223932 1223937) (-772 "NASRING.spad" 1223132 1223142 1223528 1223533) (-771 "NARNG.spad" 1222484 1222492 1223122 1223127) (-770 "NARNG.spad" 1221834 1221844 1222474 1222479) (-769 "NAGSP.spad" 1220911 1220919 1221824 1221829) (-768 "NAGS.spad" 1210572 1210580 1220901 1220906) (-767 "NAGF07.spad" 1209003 1209011 1210562 1210567) (-766 "NAGF04.spad" 1203405 1203413 1208993 1208998) (-765 "NAGF02.spad" 1197474 1197482 1203395 1203400) (-764 "NAGF01.spad" 1193235 1193243 1197464 1197469) (-763 "NAGE04.spad" 1186935 1186943 1193225 1193230) (-762 "NAGE02.spad" 1177595 1177603 1186925 1186930) (-761 "NAGE01.spad" 1173597 1173605 1177585 1177590) (-760 "NAGD03.spad" 1171601 1171609 1173587 1173592) (-759 "NAGD02.spad" 1164348 1164356 1171591 1171596) (-758 "NAGD01.spad" 1158641 1158649 1164338 1164343) (-757 "NAGC06.spad" 1154516 1154524 1158631 1158636) (-756 "NAGC05.spad" 1153017 1153025 1154506 1154511) (-755 "NAGC02.spad" 1152284 1152292 1153007 1153012) (-754 "NAALG.spad" 1151825 1151835 1152252 1152279) (-753 "NAALG.spad" 1151386 1151398 1151815 1151820) (-752 "MULTSQFR.spad" 1148344 1148361 1151376 1151381) (-751 "MULTFACT.spad" 1147727 1147744 1148334 1148339) (-750 "MTSCAT.spad" 1145821 1145842 1147625 1147722) (-749 "MTHING.spad" 1145480 1145490 1145811 1145816) (-748 "MSYSCMD.spad" 1144914 1144922 1145470 1145475) (-747 "MSET.spad" 1142872 1142882 1144620 1144659) (-746 "MSETAGG.spad" 1142717 1142727 1142840 1142867) (-745 "MRING.spad" 1139694 1139706 1142425 1142492) (-744 "MRF2.spad" 1139264 1139278 1139684 1139689) (-743 "MRATFAC.spad" 1138810 1138827 1139254 1139259) (-742 "MPRFF.spad" 1136850 1136869 1138800 1138805) (-741 "MPOLY.spad" 1134321 1134336 1134680 1134807) (-740 "MPCPF.spad" 1133585 1133604 1134311 1134316) (-739 "MPC3.spad" 1133402 1133442 1133575 1133580) (-738 "MPC2.spad" 1133048 1133081 1133392 1133397) (-737 "MONOTOOL.spad" 1131399 1131416 1133038 1133043) (-736 "MONOID.spad" 1130718 1130726 1131389 1131394) (-735 "MONOID.spad" 1130035 1130045 1130708 1130713) (-734 "MONOGEN.spad" 1128783 1128796 1129895 1130030) (-733 "MONOGEN.spad" 1127553 1127568 1128667 1128672) (-732 "MONADWU.spad" 1125583 1125591 1127543 1127548) (-731 "MONADWU.spad" 1123611 1123621 1125573 1125578) (-730 "MONAD.spad" 1122771 1122779 1123601 1123606) (-729 "MONAD.spad" 1121929 1121939 1122761 1122766) (-728 "MOEBIUS.spad" 1120665 1120679 1121909 1121924) (-727 "MODULE.spad" 1120535 1120545 1120633 1120660) (-726 "MODULE.spad" 1120425 1120437 1120525 1120530) (-725 "MODRING.spad" 1119760 1119799 1120405 1120420) (-724 "MODOP.spad" 1118425 1118437 1119582 1119649) (-723 "MODMONOM.spad" 1118156 1118174 1118415 1118420) (-722 "MODMON.spad" 1114951 1114967 1115670 1115823) (-721 "MODFIELD.spad" 1114313 1114352 1114853 1114946) (-720 "MMLFORM.spad" 1113173 1113181 1114303 1114308) (-719 "MMAP.spad" 1112915 1112949 1113163 1113168) (-718 "MLO.spad" 1111374 1111384 1112871 1112910) (-717 "MLIFT.spad" 1109986 1110003 1111364 1111369) (-716 "MKUCFUNC.spad" 1109521 1109539 1109976 1109981) (-715 "MKRECORD.spad" 1109125 1109138 1109511 1109516) (-714 "MKFUNC.spad" 1108532 1108542 1109115 1109120) (-713 "MKFLCFN.spad" 1107500 1107510 1108522 1108527) (-712 "MKBCFUNC.spad" 1106995 1107013 1107490 1107495) (-711 "MINT.spad" 1106434 1106442 1106897 1106990) (-710 "MHROWRED.spad" 1104945 1104955 1106424 1106429) (-709 "MFLOAT.spad" 1103465 1103473 1104835 1104940) (-708 "MFINFACT.spad" 1102865 1102887 1103455 1103460) (-707 "MESH.spad" 1100647 1100655 1102855 1102860) (-706 "MDDFACT.spad" 1098858 1098868 1100637 1100642) (-705 "MDAGG.spad" 1098149 1098159 1098838 1098853) (-704 "MCMPLX.spad" 1094160 1094168 1094774 1094975) (-703 "MCDEN.spad" 1093370 1093382 1094150 1094155) (-702 "MCALCFN.spad" 1090492 1090518 1093360 1093365) (-701 "MAYBE.spad" 1089776 1089787 1090482 1090487) (-700 "MATSTOR.spad" 1087084 1087094 1089766 1089771) (-699 "MATRIX.spad" 1085788 1085798 1086272 1086299) (-698 "MATLIN.spad" 1083132 1083156 1085672 1085677) (-697 "MATCAT.spad" 1074861 1074883 1083100 1083127) (-696 "MATCAT.spad" 1066462 1066486 1074703 1074708) (-695 "MATCAT2.spad" 1065744 1065792 1066452 1066457) (-694 "MAPPKG3.spad" 1064659 1064673 1065734 1065739) (-693 "MAPPKG2.spad" 1063997 1064009 1064649 1064654) (-692 "MAPPKG1.spad" 1062825 1062835 1063987 1063992) (-691 "MAPPAST.spad" 1062140 1062148 1062815 1062820) (-690 "MAPHACK3.spad" 1061952 1061966 1062130 1062135) (-689 "MAPHACK2.spad" 1061721 1061733 1061942 1061947) (-688 "MAPHACK1.spad" 1061365 1061375 1061711 1061716) (-687 "MAGMA.spad" 1059155 1059172 1061355 1061360) (-686 "MACROAST.spad" 1058734 1058742 1059145 1059150) (-685 "M3D.spad" 1056454 1056464 1058112 1058117) (-684 "LZSTAGG.spad" 1053692 1053702 1056444 1056449) (-683 "LZSTAGG.spad" 1050928 1050940 1053682 1053687) (-682 "LWORD.spad" 1047633 1047650 1050918 1050923) (-681 "LSTAST.spad" 1047417 1047425 1047623 1047628) (-680 "LSQM.spad" 1045703 1045717 1046097 1046148) (-679 "LSPP.spad" 1045238 1045255 1045693 1045698) (-678 "LSMP.spad" 1044088 1044116 1045228 1045233) (-677 "LSMP1.spad" 1041906 1041920 1044078 1044083) (-676 "LSAGG.spad" 1041575 1041585 1041874 1041901) (-675 "LSAGG.spad" 1041264 1041276 1041565 1041570) (-674 "LPOLY.spad" 1040218 1040237 1041120 1041189) (-673 "LPEFRAC.spad" 1039489 1039499 1040208 1040213) (-672 "LO.spad" 1038890 1038904 1039423 1039450) (-671 "LOGIC.spad" 1038492 1038500 1038880 1038885) (-670 "LOGIC.spad" 1038092 1038102 1038482 1038487) (-669 "LODOOPS.spad" 1037022 1037034 1038082 1038087) (-668 "LODO.spad" 1036406 1036422 1036702 1036741) (-667 "LODOF.spad" 1035452 1035469 1036363 1036368) (-666 "LODOCAT.spad" 1034118 1034128 1035408 1035447) (-665 "LODOCAT.spad" 1032782 1032794 1034074 1034079) (-664 "LODO2.spad" 1032055 1032067 1032462 1032501) (-663 "LODO1.spad" 1031455 1031465 1031735 1031774) (-662 "LODEEF.spad" 1030257 1030275 1031445 1031450) (-661 "LNAGG.spad" 1026404 1026414 1030247 1030252) (-660 "LNAGG.spad" 1022515 1022527 1026360 1026365) (-659 "LMOPS.spad" 1019283 1019300 1022505 1022510) (-658 "LMODULE.spad" 1019051 1019061 1019273 1019278) (-657 "LMDICT.spad" 1018338 1018348 1018602 1018629) (-656 "LLINSET.spad" 1017896 1017906 1018328 1018333) (-655 "LITERAL.spad" 1017802 1017813 1017886 1017891) (-654 "LIST.spad" 1015537 1015547 1016949 1016976) (-653 "LIST3.spad" 1014848 1014862 1015527 1015532) (-652 "LIST2.spad" 1013550 1013562 1014838 1014843) (-651 "LIST2MAP.spad" 1010453 1010465 1013540 1013545) (-650 "LINSET.spad" 1010232 1010242 1010443 1010448) (-649 "LINEXP.spad" 1009370 1009380 1010222 1010227) (-648 "LINDEP.spad" 1008179 1008191 1009282 1009287) (-647 "LIMITRF.spad" 1006107 1006117 1008169 1008174) (-646 "LIMITPS.spad" 1005010 1005023 1006097 1006102) (-645 "LIE.spad" 1003026 1003038 1004300 1004445) (-644 "LIECAT.spad" 1002502 1002512 1002952 1003021) (-643 "LIECAT.spad" 1002006 1002018 1002458 1002463) (-642 "LIB.spad" 1000219 1000227 1000665 1000680) (-641 "LGROBP.spad" 997572 997591 1000209 1000214) (-640 "LF.spad" 996527 996543 997562 997567) (-639 "LFCAT.spad" 995586 995594 996517 996522) (-638 "LEXTRIPK.spad" 991089 991104 995576 995581) (-637 "LEXP.spad" 989092 989119 991069 991084) (-636 "LETAST.spad" 988791 988799 989082 989087) (-635 "LEADCDET.spad" 987189 987206 988781 988786) (-634 "LAZM3PK.spad" 985893 985915 987179 987184) (-633 "LAUPOL.spad" 984586 984599 985486 985555) (-632 "LAPLACE.spad" 984169 984185 984576 984581) (-631 "LA.spad" 983609 983623 984091 984130) (-630 "LALG.spad" 983385 983395 983589 983604) (-629 "LALG.spad" 983169 983181 983375 983380) (-628 "KVTFROM.spad" 982904 982914 983159 983164) (-627 "KTVLOGIC.spad" 982416 982424 982894 982899) (-626 "KRCFROM.spad" 982154 982164 982406 982411) (-625 "KOVACIC.spad" 980877 980894 982144 982149) (-624 "KONVERT.spad" 980599 980609 980867 980872) (-623 "KOERCE.spad" 980336 980346 980589 980594) (-622 "KERNEL.spad" 978991 979001 980120 980125) (-621 "KERNEL2.spad" 978694 978706 978981 978986) (-620 "KDAGG.spad" 977803 977825 978674 978689) (-619 "KDAGG.spad" 976920 976944 977793 977798) (-618 "KAFILE.spad" 975883 975899 976118 976145) (-617 "JORDAN.spad" 973712 973724 975173 975318) (-616 "JOINAST.spad" 973406 973414 973702 973707) (-615 "JAVACODE.spad" 973272 973280 973396 973401) (-614 "IXAGG.spad" 971405 971429 973262 973267) (-613 "IXAGG.spad" 969393 969419 971252 971257) (-612 "IVECTOR.spad" 968163 968178 968318 968345) (-611 "ITUPLE.spad" 967324 967334 968153 968158) (-610 "ITRIGMNP.spad" 966163 966182 967314 967319) (-609 "ITFUN3.spad" 965669 965683 966153 966158) (-608 "ITFUN2.spad" 965413 965425 965659 965664) (-607 "ITFORM.spad" 964768 964776 965403 965408) (-606 "ITAYLOR.spad" 962762 962777 964632 964729) (-605 "ISUPS.spad" 955199 955214 961736 961833) (-604 "ISUMP.spad" 954700 954716 955189 955194) (-603 "ISTRING.spad" 953788 953801 953869 953896) (-602 "ISAST.spad" 953507 953515 953778 953783) (-601 "IRURPK.spad" 952224 952243 953497 953502) (-600 "IRSN.spad" 950196 950204 952214 952219) (-599 "IRRF2F.spad" 948681 948691 950152 950157) (-598 "IRREDFFX.spad" 948282 948293 948671 948676) (-597 "IROOT.spad" 946621 946631 948272 948277) (-596 "IR.spad" 944422 944436 946476 946503) (-595 "IRFORM.spad" 943746 943754 944412 944417) (-594 "IR2.spad" 942774 942790 943736 943741) (-593 "IR2F.spad" 941980 941996 942764 942769) (-592 "IPRNTPK.spad" 941740 941748 941970 941975) (-591 "IPF.spad" 941305 941317 941545 941638) (-590 "IPADIC.spad" 941066 941092 941231 941300) (-589 "IP4ADDR.spad" 940623 940631 941056 941061) (-588 "IOMODE.spad" 940145 940153 940613 940618) (-587 "IOBFILE.spad" 939506 939514 940135 940140) (-586 "IOBCON.spad" 939371 939379 939496 939501) (-585 "INVLAPLA.spad" 939020 939036 939361 939366) (-584 "INTTR.spad" 932402 932419 939010 939015) (-583 "INTTOOLS.spad" 930157 930173 931976 931981) (-582 "INTSLPE.spad" 929477 929485 930147 930152) (-581 "INTRVL.spad" 929043 929053 929391 929472) (-580 "INTRF.spad" 927467 927481 929033 929038) (-579 "INTRET.spad" 926899 926909 927457 927462) (-578 "INTRAT.spad" 925626 925643 926889 926894) (-577 "INTPM.spad" 924011 924027 925269 925274) (-576 "INTPAF.spad" 921875 921893 923943 923948) (-575 "INTPACK.spad" 912249 912257 921865 921870) (-574 "INT.spad" 911697 911705 912103 912244) (-573 "INTHERTR.spad" 910971 910988 911687 911692) (-572 "INTHERAL.spad" 910641 910665 910961 910966) (-571 "INTHEORY.spad" 907080 907088 910631 910636) (-570 "INTG0.spad" 900813 900831 907012 907017) (-569 "INTFTBL.spad" 894842 894850 900803 900808) (-568 "INTFACT.spad" 893901 893911 894832 894837) (-567 "INTEF.spad" 892286 892302 893891 893896) (-566 "INTDOM.spad" 890909 890917 892212 892281) (-565 "INTDOM.spad" 889594 889604 890899 890904) (-564 "INTCAT.spad" 887853 887863 889508 889589) (-563 "INTBIT.spad" 887360 887368 887843 887848) (-562 "INTALG.spad" 886548 886575 887350 887355) (-561 "INTAF.spad" 886048 886064 886538 886543) (-560 "INTABL.spad" 884566 884597 884729 884756) (-559 "INT8.spad" 884446 884454 884556 884561) (-558 "INT64.spad" 884325 884333 884436 884441) (-557 "INT32.spad" 884204 884212 884315 884320) (-556 "INT16.spad" 884083 884091 884194 884199) (-555 "INS.spad" 881586 881594 883985 884078) (-554 "INS.spad" 879175 879185 881576 881581) (-553 "INPSIGN.spad" 878623 878636 879165 879170) (-552 "INPRODPF.spad" 877719 877738 878613 878618) (-551 "INPRODFF.spad" 876807 876831 877709 877714) (-550 "INNMFACT.spad" 875782 875799 876797 876802) (-549 "INMODGCD.spad" 875270 875300 875772 875777) (-548 "INFSP.spad" 873567 873589 875260 875265) (-547 "INFPROD0.spad" 872647 872666 873557 873562) (-546 "INFORM.spad" 869846 869854 872637 872642) (-545 "INFORM1.spad" 869471 869481 869836 869841) (-544 "INFINITY.spad" 869023 869031 869461 869466) (-543 "INETCLTS.spad" 869000 869008 869013 869018) (-542 "INEP.spad" 867538 867560 868990 868995) (-541 "INDE.spad" 867267 867284 867528 867533) (-540 "INCRMAPS.spad" 866688 866698 867257 867262) (-539 "INBFILE.spad" 865760 865768 866678 866683) (-538 "INBFF.spad" 861554 861565 865750 865755) (-537 "INBCON.spad" 859844 859852 861544 861549) (-536 "INBCON.spad" 858132 858142 859834 859839) (-535 "INAST.spad" 857793 857801 858122 858127) (-534 "IMPTAST.spad" 857501 857509 857783 857788) (-533 "IMATRIX.spad" 856446 856472 856958 856985) (-532 "IMATQF.spad" 855540 855584 856402 856407) (-531 "IMATLIN.spad" 854145 854169 855496 855501) (-530 "ILIST.spad" 852803 852818 853328 853355) (-529 "IIARRAY2.spad" 852191 852229 852410 852437) (-528 "IFF.spad" 851601 851617 851872 851965) (-527 "IFAST.spad" 851215 851223 851591 851596) (-526 "IFARRAY.spad" 848708 848723 850398 850425) (-525 "IFAMON.spad" 848570 848587 848664 848669) (-524 "IEVALAB.spad" 847975 847987 848560 848565) (-523 "IEVALAB.spad" 847378 847392 847965 847970) (-522 "IDPO.spad" 847176 847188 847368 847373) (-521 "IDPOAMS.spad" 846932 846944 847166 847171) (-520 "IDPOAM.spad" 846652 846664 846922 846927) (-519 "IDPC.spad" 845590 845602 846642 846647) (-518 "IDPAM.spad" 845335 845347 845580 845585) (-517 "IDPAG.spad" 845082 845094 845325 845330) (-516 "IDENT.spad" 844732 844740 845072 845077) (-515 "IDECOMP.spad" 841971 841989 844722 844727) (-514 "IDEAL.spad" 836920 836959 841906 841911) (-513 "ICDEN.spad" 836109 836125 836910 836915) (-512 "ICARD.spad" 835300 835308 836099 836104) (-511 "IBPTOOLS.spad" 833907 833924 835290 835295) (-510 "IBITS.spad" 833110 833123 833543 833570) (-509 "IBATOOL.spad" 830087 830106 833100 833105) (-508 "IBACHIN.spad" 828594 828609 830077 830082) (-507 "IARRAY2.spad" 827582 827608 828201 828228) (-506 "IARRAY1.spad" 826627 826642 826765 826792) (-505 "IAN.spad" 824850 824858 826443 826536) (-504 "IALGFACT.spad" 824453 824486 824840 824845) (-503 "HYPCAT.spad" 823877 823885 824443 824448) (-502 "HYPCAT.spad" 823299 823309 823867 823872) (-501 "HOSTNAME.spad" 823107 823115 823289 823294) (-500 "HOMOTOP.spad" 822850 822860 823097 823102) (-499 "HOAGG.spad" 820132 820142 822840 822845) (-498 "HOAGG.spad" 817189 817201 819899 819904) (-497 "HEXADEC.spad" 815291 815299 815656 815749) (-496 "HEUGCD.spad" 814326 814337 815281 815286) (-495 "HELLFDIV.spad" 813916 813940 814316 814321) (-494 "HEAP.spad" 813308 813318 813523 813550) (-493 "HEADAST.spad" 812841 812849 813298 813303) (-492 "HDP.spad" 802919 802935 803296 803427) (-491 "HDMP.spad" 800133 800148 800749 800876) (-490 "HB.spad" 798384 798392 800123 800128) (-489 "HASHTBL.spad" 796854 796885 797065 797092) (-488 "HASAST.spad" 796570 796578 796844 796849) (-487 "HACKPI.spad" 796061 796069 796472 796565) (-486 "GTSET.spad" 795000 795016 795707 795734) (-485 "GSTBL.spad" 793519 793554 793693 793708) (-484 "GSERIES.spad" 790690 790717 791651 791800) (-483 "GROUP.spad" 789963 789971 790670 790685) (-482 "GROUP.spad" 789244 789254 789953 789958) (-481 "GROEBSOL.spad" 787738 787759 789234 789239) (-480 "GRMOD.spad" 786309 786321 787728 787733) (-479 "GRMOD.spad" 784878 784892 786299 786304) (-478 "GRIMAGE.spad" 777767 777775 784868 784873) (-477 "GRDEF.spad" 776146 776154 777757 777762) (-476 "GRAY.spad" 774609 774617 776136 776141) (-475 "GRALG.spad" 773686 773698 774599 774604) (-474 "GRALG.spad" 772761 772775 773676 773681) (-473 "GPOLSET.spad" 772215 772238 772443 772470) (-472 "GOSPER.spad" 771484 771502 772205 772210) (-471 "GMODPOL.spad" 770632 770659 771452 771479) (-470 "GHENSEL.spad" 769715 769729 770622 770627) (-469 "GENUPS.spad" 766008 766021 769705 769710) (-468 "GENUFACT.spad" 765585 765595 765998 766003) (-467 "GENPGCD.spad" 765171 765188 765575 765580) (-466 "GENMFACT.spad" 764623 764642 765161 765166) (-465 "GENEEZ.spad" 762574 762587 764613 764618) (-464 "GDMP.spad" 759630 759647 760404 760531) (-463 "GCNAALG.spad" 753553 753580 759424 759491) (-462 "GCDDOM.spad" 752729 752737 753479 753548) (-461 "GCDDOM.spad" 751967 751977 752719 752724) (-460 "GB.spad" 749493 749531 751923 751928) (-459 "GBINTERN.spad" 745513 745551 749483 749488) (-458 "GBF.spad" 741280 741318 745503 745508) (-457 "GBEUCLID.spad" 739162 739200 741270 741275) (-456 "GAUSSFAC.spad" 738475 738483 739152 739157) (-455 "GALUTIL.spad" 736801 736811 738431 738436) (-454 "GALPOLYU.spad" 735255 735268 736791 736796) (-453 "GALFACTU.spad" 733428 733447 735245 735250) (-452 "GALFACT.spad" 723617 723628 733418 733423) (-451 "FVFUN.spad" 720640 720648 723607 723612) (-450 "FVC.spad" 719692 719700 720630 720635) (-449 "FUNDESC.spad" 719370 719378 719682 719687) (-448 "FUNCTION.spad" 719219 719231 719360 719365) (-447 "FT.spad" 717516 717524 719209 719214) (-446 "FTEM.spad" 716681 716689 717506 717511) (-445 "FSUPFACT.spad" 715581 715600 716617 716622) (-444 "FST.spad" 713667 713675 715571 715576) (-443 "FSRED.spad" 713147 713163 713657 713662) (-442 "FSPRMELT.spad" 712029 712045 713104 713109) (-441 "FSPECF.spad" 710120 710136 712019 712024) (-440 "FS.spad" 704388 704398 709895 710115) (-439 "FS.spad" 698434 698446 703943 703948) (-438 "FSINT.spad" 698094 698110 698424 698429) (-437 "FSERIES.spad" 697285 697297 697914 698013) (-436 "FSCINT.spad" 696602 696618 697275 697280) (-435 "FSAGG.spad" 695719 695729 696558 696597) (-434 "FSAGG.spad" 694798 694810 695639 695644) (-433 "FSAGG2.spad" 693541 693557 694788 694793) (-432 "FS2UPS.spad" 688032 688066 693531 693536) (-431 "FS2.spad" 687679 687695 688022 688027) (-430 "FS2EXPXP.spad" 686804 686827 687669 687674) (-429 "FRUTIL.spad" 685758 685768 686794 686799) (-428 "FR.spad" 679290 679300 684598 684667) (-427 "FRNAALG.spad" 674559 674569 679232 679285) (-426 "FRNAALG.spad" 669840 669852 674515 674520) (-425 "FRNAAF2.spad" 669296 669314 669830 669835) (-424 "FRMOD.spad" 668706 668736 669227 669232) (-423 "FRIDEAL.spad" 667931 667952 668686 668701) (-422 "FRIDEAL2.spad" 667535 667567 667921 667926) (-421 "FRETRCT.spad" 667046 667056 667525 667530) (-420 "FRETRCT.spad" 666423 666435 666904 666909) (-419 "FRAMALG.spad" 664771 664784 666379 666418) (-418 "FRAMALG.spad" 663151 663166 664761 664766) (-417 "FRAC.spad" 660250 660260 660653 660826) (-416 "FRAC2.spad" 659855 659867 660240 660245) (-415 "FR2.spad" 659191 659203 659845 659850) (-414 "FPS.spad" 656006 656014 659081 659186) (-413 "FPS.spad" 652849 652859 655926 655931) (-412 "FPC.spad" 651895 651903 652751 652844) (-411 "FPC.spad" 651027 651037 651885 651890) (-410 "FPATMAB.spad" 650789 650799 651017 651022) (-409 "FPARFRAC.spad" 649276 649293 650779 650784) (-408 "FORTRAN.spad" 647782 647825 649266 649271) (-407 "FORT.spad" 646731 646739 647772 647777) (-406 "FORTFN.spad" 643901 643909 646721 646726) (-405 "FORTCAT.spad" 643585 643593 643891 643896) (-404 "FORMULA.spad" 641059 641067 643575 643580) (-403 "FORMULA1.spad" 640538 640548 641049 641054) (-402 "FORDER.spad" 640229 640253 640528 640533) (-401 "FOP.spad" 639430 639438 640219 640224) (-400 "FNLA.spad" 638854 638876 639398 639425) (-399 "FNCAT.spad" 637449 637457 638844 638849) (-398 "FNAME.spad" 637341 637349 637439 637444) (-397 "FMTC.spad" 637139 637147 637267 637336) (-396 "FMONOID.spad" 636804 636814 637095 637100) (-395 "FMONCAT.spad" 633957 633967 636794 636799) (-394 "FM.spad" 633652 633664 633891 633918) (-393 "FMFUN.spad" 630682 630690 633642 633647) (-392 "FMC.spad" 629734 629742 630672 630677) (-391 "FMCAT.spad" 627402 627420 629702 629729) (-390 "FM1.spad" 626759 626771 627336 627363) (-389 "FLOATRP.spad" 624494 624508 626749 626754) (-388 "FLOAT.spad" 617808 617816 624360 624489) (-387 "FLOATCP.spad" 615239 615253 617798 617803) (-386 "FLINEXP.spad" 614961 614971 615229 615234) (-385 "FLINEXP.spad" 614627 614639 614897 614902) (-384 "FLASORT.spad" 613953 613965 614617 614622) (-383 "FLALG.spad" 611599 611618 613879 613948) (-382 "FLAGG.spad" 608641 608651 611579 611594) (-381 "FLAGG.spad" 605584 605596 608524 608529) (-380 "FLAGG2.spad" 604309 604325 605574 605579) (-379 "FINRALG.spad" 602370 602383 604265 604304) (-378 "FINRALG.spad" 600357 600372 602254 602259) (-377 "FINITE.spad" 599509 599517 600347 600352) (-376 "FINAALG.spad" 588630 588640 599451 599504) (-375 "FINAALG.spad" 577763 577775 588586 588591) (-374 "FILE.spad" 577346 577356 577753 577758) (-373 "FILECAT.spad" 575872 575889 577336 577341) (-372 "FIELD.spad" 575278 575286 575774 575867) (-371 "FIELD.spad" 574770 574780 575268 575273) (-370 "FGROUP.spad" 573417 573427 574750 574765) (-369 "FGLMICPK.spad" 572204 572219 573407 573412) (-368 "FFX.spad" 571579 571594 571920 572013) (-367 "FFSLPE.spad" 571082 571103 571569 571574) (-366 "FFPOLY.spad" 562344 562355 571072 571077) (-365 "FFPOLY2.spad" 561404 561421 562334 562339) (-364 "FFP.spad" 560801 560821 561120 561213) (-363 "FF.spad" 560249 560265 560482 560575) (-362 "FFNBX.spad" 558761 558781 559965 560058) (-361 "FFNBP.spad" 557274 557291 558477 558570) (-360 "FFNB.spad" 555739 555760 556955 557048) (-359 "FFINTBAS.spad" 553253 553272 555729 555734) (-358 "FFIELDC.spad" 550830 550838 553155 553248) (-357 "FFIELDC.spad" 548493 548503 550820 550825) (-356 "FFHOM.spad" 547241 547258 548483 548488) (-355 "FFF.spad" 544676 544687 547231 547236) (-354 "FFCGX.spad" 543523 543543 544392 544485) (-353 "FFCGP.spad" 542412 542432 543239 543332) (-352 "FFCG.spad" 541204 541225 542093 542186) (-351 "FFCAT.spad" 534377 534399 541043 541199) (-350 "FFCAT.spad" 527629 527653 534297 534302) (-349 "FFCAT2.spad" 527376 527416 527619 527624) (-348 "FEXPR.spad" 519093 519139 527132 527171) (-347 "FEVALAB.spad" 518801 518811 519083 519088) (-346 "FEVALAB.spad" 518294 518306 518578 518583) (-345 "FDIV.spad" 517736 517760 518284 518289) (-344 "FDIVCAT.spad" 515800 515824 517726 517731) (-343 "FDIVCAT.spad" 513862 513888 515790 515795) (-342 "FDIV2.spad" 513518 513558 513852 513857) (-341 "FCTRDATA.spad" 512526 512534 513508 513513) (-340 "FCPAK1.spad" 511093 511101 512516 512521) (-339 "FCOMP.spad" 510472 510482 511083 511088) (-338 "FC.spad" 500479 500487 510462 510467) (-337 "FAXF.spad" 493450 493464 500381 500474) (-336 "FAXF.spad" 486473 486489 493406 493411) (-335 "FARRAY.spad" 484623 484633 485656 485683) (-334 "FAMR.spad" 482759 482771 484521 484618) (-333 "FAMR.spad" 480879 480893 482643 482648) (-332 "FAMONOID.spad" 480547 480557 480833 480838) (-331 "FAMONC.spad" 478843 478855 480537 480542) (-330 "FAGROUP.spad" 478467 478477 478739 478766) (-329 "FACUTIL.spad" 476671 476688 478457 478462) (-328 "FACTFUNC.spad" 475865 475875 476661 476666) (-327 "EXPUPXS.spad" 472698 472721 473997 474146) (-326 "EXPRTUBE.spad" 469986 469994 472688 472693) (-325 "EXPRODE.spad" 467146 467162 469976 469981) (-324 "EXPR.spad" 462321 462331 463035 463330) (-323 "EXPR2UPS.spad" 458443 458456 462311 462316) (-322 "EXPR2.spad" 458148 458160 458433 458438) (-321 "EXPEXPAN.spad" 455088 455113 455720 455813) (-320 "EXIT.spad" 454759 454767 455078 455083) (-319 "EXITAST.spad" 454495 454503 454749 454754) (-318 "EVALCYC.spad" 453955 453969 454485 454490) (-317 "EVALAB.spad" 453527 453537 453945 453950) (-316 "EVALAB.spad" 453097 453109 453517 453522) (-315 "EUCDOM.spad" 450671 450679 453023 453092) (-314 "EUCDOM.spad" 448307 448317 450661 450666) (-313 "ESTOOLS.spad" 440153 440161 448297 448302) (-312 "ESTOOLS2.spad" 439756 439770 440143 440148) (-311 "ESTOOLS1.spad" 439441 439452 439746 439751) (-310 "ES.spad" 432256 432264 439431 439436) (-309 "ES.spad" 424977 424987 432154 432159) (-308 "ESCONT.spad" 421770 421778 424967 424972) (-307 "ESCONT1.spad" 421519 421531 421760 421765) (-306 "ES2.spad" 421024 421040 421509 421514) (-305 "ES1.spad" 420594 420610 421014 421019) (-304 "ERROR.spad" 417921 417929 420584 420589) (-303 "EQTBL.spad" 416393 416415 416602 416629) (-302 "EQ.spad" 411198 411208 413985 414097) (-301 "EQ2.spad" 410916 410928 411188 411193) (-300 "EP.spad" 407242 407252 410906 410911) (-299 "ENV.spad" 405920 405928 407232 407237) (-298 "ENTIRER.spad" 405588 405596 405864 405915) (-297 "EMR.spad" 404876 404917 405514 405583) (-296 "ELTAGG.spad" 403130 403149 404866 404871) (-295 "ELTAGG.spad" 401348 401369 403086 403091) (-294 "ELTAB.spad" 400823 400836 401338 401343) (-293 "ELFUTS.spad" 400210 400229 400813 400818) (-292 "ELEMFUN.spad" 399899 399907 400200 400205) (-291 "ELEMFUN.spad" 399586 399596 399889 399894) (-290 "ELAGG.spad" 397557 397567 399566 399581) (-289 "ELAGG.spad" 395465 395477 397476 397481) (-288 "ELABOR.spad" 394811 394819 395455 395460) (-287 "ELABEXPR.spad" 393743 393751 394801 394806) (-286 "EFUPXS.spad" 390519 390549 393699 393704) (-285 "EFULS.spad" 387355 387378 390475 390480) (-284 "EFSTRUC.spad" 385370 385386 387345 387350) (-283 "EF.spad" 380146 380162 385360 385365) (-282 "EAB.spad" 378422 378430 380136 380141) (-281 "E04UCFA.spad" 377958 377966 378412 378417) (-280 "E04NAFA.spad" 377535 377543 377948 377953) (-279 "E04MBFA.spad" 377115 377123 377525 377530) (-278 "E04JAFA.spad" 376651 376659 377105 377110) (-277 "E04GCFA.spad" 376187 376195 376641 376646) (-276 "E04FDFA.spad" 375723 375731 376177 376182) (-275 "E04DGFA.spad" 375259 375267 375713 375718) (-274 "E04AGNT.spad" 371109 371117 375249 375254) (-273 "DVARCAT.spad" 367999 368009 371099 371104) (-272 "DVARCAT.spad" 364887 364899 367989 367994) (-271 "DSMP.spad" 362354 362368 362659 362786) (-270 "DROPT.spad" 356313 356321 362344 362349) (-269 "DROPT1.spad" 355978 355988 356303 356308) (-268 "DROPT0.spad" 350835 350843 355968 355973) (-267 "DRAWPT.spad" 349008 349016 350825 350830) (-266 "DRAW.spad" 341884 341897 348998 349003) (-265 "DRAWHACK.spad" 341192 341202 341874 341879) (-264 "DRAWCX.spad" 338662 338670 341182 341187) (-263 "DRAWCURV.spad" 338209 338224 338652 338657) (-262 "DRAWCFUN.spad" 327741 327749 338199 338204) (-261 "DQAGG.spad" 325919 325929 327709 327736) (-260 "DPOLCAT.spad" 321268 321284 325787 325914) (-259 "DPOLCAT.spad" 316703 316721 321224 321229) (-258 "DPMO.spad" 309497 309513 309635 309880) (-257 "DPMM.spad" 302304 302322 302429 302674) (-256 "DOMTMPLT.spad" 302075 302083 302294 302299) (-255 "DOMCTOR.spad" 301830 301838 302065 302070) (-254 "DOMAIN.spad" 300917 300925 301820 301825) (-253 "DMP.spad" 298177 298192 298747 298874) (-252 "DLP.spad" 297529 297539 298167 298172) (-251 "DLIST.spad" 296108 296118 296712 296739) (-250 "DLAGG.spad" 294525 294535 296098 296103) (-249 "DIVRING.spad" 294067 294075 294469 294520) (-248 "DIVRING.spad" 293653 293663 294057 294062) (-247 "DISPLAY.spad" 291843 291851 293643 293648) (-246 "DIRPROD.spad" 281658 281674 282298 282429) (-245 "DIRPROD2.spad" 280476 280494 281648 281653) (-244 "DIRPCAT.spad" 279637 279653 280340 280471) (-243 "DIRPCAT.spad" 278527 278545 279232 279237) (-242 "DIOSP.spad" 277352 277360 278517 278522) (-241 "DIOPS.spad" 276348 276358 277332 277347) (-240 "DIOPS.spad" 275318 275330 276304 276309) (-239 "DIFRING.spad" 275156 275164 275298 275313) (-238 "DIFFSPC.spad" 274735 274743 275146 275151) (-237 "DIFFSPC.spad" 274312 274322 274725 274730) (-236 "DIFFMOD.spad" 273801 273811 274280 274307) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2266720 2266725 2266730 2266735) (-2 NIL 2266700 2266705 2266710 2266715) (-1 NIL 2266680 2266685 2266690 2266695) (0 NIL 2266660 2266665 2266670 2266675) (-1313 "ZMOD.spad" 2266469 2266482 2266598 2266655) (-1312 "ZLINDEP.spad" 2265535 2265546 2266459 2266464) (-1311 "ZDSOLVE.spad" 2255480 2255502 2265525 2265530) (-1310 "YSTREAM.spad" 2254975 2254986 2255470 2255475) (-1309 "YDIAGRAM.spad" 2254609 2254618 2254965 2254970) (-1308 "XRPOLY.spad" 2253829 2253849 2254465 2254534) (-1307 "XPR.spad" 2251624 2251637 2253547 2253646) (-1306 "XPOLY.spad" 2251179 2251190 2251480 2251549) (-1305 "XPOLYC.spad" 2250498 2250514 2251105 2251174) (-1304 "XPBWPOLY.spad" 2248935 2248955 2250278 2250347) (-1303 "XF.spad" 2247398 2247413 2248837 2248930) (-1302 "XF.spad" 2245841 2245858 2247282 2247287) (-1301 "XFALG.spad" 2242889 2242905 2245767 2245836) (-1300 "XEXPPKG.spad" 2242140 2242166 2242879 2242884) (-1299 "XDPOLY.spad" 2241754 2241770 2241996 2242065) (-1298 "XALG.spad" 2241414 2241425 2241710 2241749) (-1297 "WUTSET.spad" 2237253 2237270 2241060 2241087) (-1296 "WP.spad" 2236452 2236496 2237111 2237178) (-1295 "WHILEAST.spad" 2236250 2236259 2236442 2236447) (-1294 "WHEREAST.spad" 2235921 2235930 2236240 2236245) (-1293 "WFFINTBS.spad" 2233584 2233606 2235911 2235916) (-1292 "WEIER.spad" 2231806 2231817 2233574 2233579) (-1291 "VSPACE.spad" 2231479 2231490 2231774 2231801) (-1290 "VSPACE.spad" 2231172 2231185 2231469 2231474) (-1289 "VOID.spad" 2230849 2230858 2231162 2231167) (-1288 "VIEW.spad" 2228529 2228538 2230839 2230844) (-1287 "VIEWDEF.spad" 2223730 2223739 2228519 2228524) (-1286 "VIEW3D.spad" 2207691 2207700 2223720 2223725) (-1285 "VIEW2D.spad" 2195582 2195591 2207681 2207686) (-1284 "VECTOR.spad" 2194256 2194267 2194507 2194534) (-1283 "VECTOR2.spad" 2192895 2192908 2194246 2194251) (-1282 "VECTCAT.spad" 2190799 2190810 2192863 2192890) (-1281 "VECTCAT.spad" 2188510 2188523 2190576 2190581) (-1280 "VARIABLE.spad" 2188290 2188305 2188500 2188505) (-1279 "UTYPE.spad" 2187934 2187943 2188280 2188285) (-1278 "UTSODETL.spad" 2187229 2187253 2187890 2187895) (-1277 "UTSODE.spad" 2185445 2185465 2187219 2187224) (-1276 "UTS.spad" 2180249 2180277 2183912 2184009) (-1275 "UTSCAT.spad" 2177728 2177744 2180147 2180244) (-1274 "UTSCAT.spad" 2174851 2174869 2177272 2177277) (-1273 "UTS2.spad" 2174446 2174481 2174841 2174846) (-1272 "URAGG.spad" 2169119 2169130 2174436 2174441) (-1271 "URAGG.spad" 2163756 2163769 2169075 2169080) (-1270 "UPXSSING.spad" 2161401 2161427 2162837 2162970) (-1269 "UPXS.spad" 2158555 2158583 2159533 2159682) (-1268 "UPXSCONS.spad" 2156314 2156334 2156687 2156836) (-1267 "UPXSCCA.spad" 2154885 2154905 2156160 2156309) (-1266 "UPXSCCA.spad" 2153598 2153620 2154875 2154880) (-1265 "UPXSCAT.spad" 2152187 2152203 2153444 2153593) (-1264 "UPXS2.spad" 2151730 2151783 2152177 2152182) (-1263 "UPSQFREE.spad" 2150144 2150158 2151720 2151725) (-1262 "UPSCAT.spad" 2147931 2147955 2150042 2150139) (-1261 "UPSCAT.spad" 2145424 2145450 2147537 2147542) (-1260 "UPOLYC.spad" 2140464 2140475 2145266 2145419) (-1259 "UPOLYC.spad" 2135396 2135409 2140200 2140205) (-1258 "UPOLYC2.spad" 2134867 2134886 2135386 2135391) (-1257 "UP.spad" 2132066 2132081 2132453 2132606) (-1256 "UPMP.spad" 2130966 2130979 2132056 2132061) (-1255 "UPDIVP.spad" 2130531 2130545 2130956 2130961) (-1254 "UPDECOMP.spad" 2128776 2128790 2130521 2130526) (-1253 "UPCDEN.spad" 2127985 2128001 2128766 2128771) (-1252 "UP2.spad" 2127349 2127370 2127975 2127980) (-1251 "UNISEG.spad" 2126702 2126713 2127268 2127273) (-1250 "UNISEG2.spad" 2126199 2126212 2126658 2126663) (-1249 "UNIFACT.spad" 2125302 2125314 2126189 2126194) (-1248 "ULS.spad" 2115860 2115888 2116947 2117376) (-1247 "ULSCONS.spad" 2108256 2108276 2108626 2108775) (-1246 "ULSCCAT.spad" 2105993 2106013 2108102 2108251) (-1245 "ULSCCAT.spad" 2103838 2103860 2105949 2105954) (-1244 "ULSCAT.spad" 2102070 2102086 2103684 2103833) (-1243 "ULS2.spad" 2101584 2101637 2102060 2102065) (-1242 "UINT8.spad" 2101461 2101470 2101574 2101579) (-1241 "UINT64.spad" 2101337 2101346 2101451 2101456) (-1240 "UINT32.spad" 2101213 2101222 2101327 2101332) (-1239 "UINT16.spad" 2101089 2101098 2101203 2101208) (-1238 "UFD.spad" 2100154 2100163 2101015 2101084) (-1237 "UFD.spad" 2099281 2099292 2100144 2100149) (-1236 "UDVO.spad" 2098162 2098171 2099271 2099276) (-1235 "UDPO.spad" 2095655 2095666 2098118 2098123) (-1234 "TYPE.spad" 2095587 2095596 2095645 2095650) (-1233 "TYPEAST.spad" 2095506 2095515 2095577 2095582) (-1232 "TWOFACT.spad" 2094158 2094173 2095496 2095501) (-1231 "TUPLE.spad" 2093644 2093655 2094057 2094062) (-1230 "TUBETOOL.spad" 2090511 2090520 2093634 2093639) (-1229 "TUBE.spad" 2089158 2089175 2090501 2090506) (-1228 "TS.spad" 2087757 2087773 2088723 2088820) (-1227 "TSETCAT.spad" 2074884 2074901 2087725 2087752) (-1226 "TSETCAT.spad" 2061997 2062016 2074840 2074845) (-1225 "TRMANIP.spad" 2056363 2056380 2061703 2061708) (-1224 "TRIMAT.spad" 2055326 2055351 2056353 2056358) (-1223 "TRIGMNIP.spad" 2053853 2053870 2055316 2055321) (-1222 "TRIGCAT.spad" 2053365 2053374 2053843 2053848) (-1221 "TRIGCAT.spad" 2052875 2052886 2053355 2053360) (-1220 "TREE.spad" 2051450 2051461 2052482 2052509) (-1219 "TRANFUN.spad" 2051289 2051298 2051440 2051445) (-1218 "TRANFUN.spad" 2051126 2051137 2051279 2051284) (-1217 "TOPSP.spad" 2050800 2050809 2051116 2051121) (-1216 "TOOLSIGN.spad" 2050463 2050474 2050790 2050795) (-1215 "TEXTFILE.spad" 2049024 2049033 2050453 2050458) (-1214 "TEX.spad" 2046170 2046179 2049014 2049019) (-1213 "TEX1.spad" 2045726 2045737 2046160 2046165) (-1212 "TEMUTL.spad" 2045281 2045290 2045716 2045721) (-1211 "TBCMPPK.spad" 2043374 2043397 2045271 2045276) (-1210 "TBAGG.spad" 2042424 2042447 2043354 2043369) (-1209 "TBAGG.spad" 2041482 2041507 2042414 2042419) (-1208 "TANEXP.spad" 2040890 2040901 2041472 2041477) (-1207 "TALGOP.spad" 2040614 2040625 2040880 2040885) (-1206 "TABLE.spad" 2039025 2039048 2039295 2039322) (-1205 "TABLEAU.spad" 2038506 2038517 2039015 2039020) (-1204 "TABLBUMP.spad" 2035309 2035320 2038496 2038501) (-1203 "SYSTEM.spad" 2034537 2034546 2035299 2035304) (-1202 "SYSSOLP.spad" 2032020 2032031 2034527 2034532) (-1201 "SYSPTR.spad" 2031919 2031928 2032010 2032015) (-1200 "SYSNNI.spad" 2031101 2031112 2031909 2031914) (-1199 "SYSINT.spad" 2030505 2030516 2031091 2031096) (-1198 "SYNTAX.spad" 2026711 2026720 2030495 2030500) (-1197 "SYMTAB.spad" 2024779 2024788 2026701 2026706) (-1196 "SYMS.spad" 2020802 2020811 2024769 2024774) (-1195 "SYMPOLY.spad" 2019809 2019820 2019891 2020018) (-1194 "SYMFUNC.spad" 2019310 2019321 2019799 2019804) (-1193 "SYMBOL.spad" 2016813 2016822 2019300 2019305) (-1192 "SWITCH.spad" 2013584 2013593 2016803 2016808) (-1191 "SUTS.spad" 2010489 2010517 2012051 2012148) (-1190 "SUPXS.spad" 2007630 2007658 2008621 2008770) (-1189 "SUP.spad" 2004443 2004454 2005216 2005369) (-1188 "SUPFRACF.spad" 2003548 2003566 2004433 2004438) (-1187 "SUP2.spad" 2002940 2002953 2003538 2003543) (-1186 "SUMRF.spad" 2001914 2001925 2002930 2002935) (-1185 "SUMFS.spad" 2001551 2001568 2001904 2001909) (-1184 "SULS.spad" 1992096 1992124 1993196 1993625) (-1183 "SUCHTAST.spad" 1991865 1991874 1992086 1992091) (-1182 "SUCH.spad" 1991547 1991562 1991855 1991860) (-1181 "SUBSPACE.spad" 1983662 1983677 1991537 1991542) (-1180 "SUBRESP.spad" 1982832 1982846 1983618 1983623) (-1179 "STTF.spad" 1978931 1978947 1982822 1982827) (-1178 "STTFNC.spad" 1975399 1975415 1978921 1978926) (-1177 "STTAYLOR.spad" 1968034 1968045 1975280 1975285) (-1176 "STRTBL.spad" 1966539 1966556 1966688 1966715) (-1175 "STRING.spad" 1965948 1965957 1965962 1965989) (-1174 "STRICAT.spad" 1965736 1965745 1965916 1965943) (-1173 "STREAM.spad" 1962654 1962665 1965261 1965276) (-1172 "STREAM3.spad" 1962227 1962242 1962644 1962649) (-1171 "STREAM2.spad" 1961355 1961368 1962217 1962222) (-1170 "STREAM1.spad" 1961061 1961072 1961345 1961350) (-1169 "STINPROD.spad" 1959997 1960013 1961051 1961056) (-1168 "STEP.spad" 1959198 1959207 1959987 1959992) (-1167 "STEPAST.spad" 1958432 1958441 1959188 1959193) (-1166 "STBL.spad" 1956958 1956986 1957125 1957140) (-1165 "STAGG.spad" 1956033 1956044 1956948 1956953) (-1164 "STAGG.spad" 1955106 1955119 1956023 1956028) (-1163 "STACK.spad" 1954463 1954474 1954713 1954740) (-1162 "SREGSET.spad" 1952167 1952184 1954109 1954136) (-1161 "SRDCMPK.spad" 1950728 1950748 1952157 1952162) (-1160 "SRAGG.spad" 1945871 1945880 1950696 1950723) (-1159 "SRAGG.spad" 1941034 1941045 1945861 1945866) (-1158 "SQMATRIX.spad" 1938706 1938724 1939622 1939709) (-1157 "SPLTREE.spad" 1933258 1933271 1938142 1938169) (-1156 "SPLNODE.spad" 1929846 1929859 1933248 1933253) (-1155 "SPFCAT.spad" 1928655 1928664 1929836 1929841) (-1154 "SPECOUT.spad" 1927207 1927216 1928645 1928650) (-1153 "SPADXPT.spad" 1918802 1918811 1927197 1927202) (-1152 "spad-parser.spad" 1918267 1918276 1918792 1918797) (-1151 "SPADAST.spad" 1917968 1917977 1918257 1918262) (-1150 "SPACEC.spad" 1902167 1902178 1917958 1917963) (-1149 "SPACE3.spad" 1901943 1901954 1902157 1902162) (-1148 "SORTPAK.spad" 1901492 1901505 1901899 1901904) (-1147 "SOLVETRA.spad" 1899255 1899266 1901482 1901487) (-1146 "SOLVESER.spad" 1897783 1897794 1899245 1899250) (-1145 "SOLVERAD.spad" 1893809 1893820 1897773 1897778) (-1144 "SOLVEFOR.spad" 1892271 1892289 1893799 1893804) (-1143 "SNTSCAT.spad" 1891871 1891888 1892239 1892266) (-1142 "SMTS.spad" 1890143 1890169 1891436 1891533) (-1141 "SMP.spad" 1887618 1887638 1888008 1888135) (-1140 "SMITH.spad" 1886463 1886488 1887608 1887613) (-1139 "SMATCAT.spad" 1884573 1884603 1886407 1886458) (-1138 "SMATCAT.spad" 1882615 1882647 1884451 1884456) (-1137 "SKAGG.spad" 1881578 1881589 1882583 1882610) (-1136 "SINT.spad" 1880518 1880527 1881444 1881573) (-1135 "SIMPAN.spad" 1880246 1880255 1880508 1880513) (-1134 "SIG.spad" 1879576 1879585 1880236 1880241) (-1133 "SIGNRF.spad" 1878694 1878705 1879566 1879571) (-1132 "SIGNEF.spad" 1877973 1877990 1878684 1878689) (-1131 "SIGAST.spad" 1877358 1877367 1877963 1877968) (-1130 "SHP.spad" 1875286 1875301 1877314 1877319) (-1129 "SHDP.spad" 1865232 1865259 1865741 1865872) (-1128 "SGROUP.spad" 1864840 1864849 1865222 1865227) (-1127 "SGROUP.spad" 1864446 1864457 1864830 1864835) (-1126 "SGCF.spad" 1857585 1857594 1864436 1864441) (-1125 "SFRTCAT.spad" 1856515 1856532 1857553 1857580) (-1124 "SFRGCD.spad" 1855578 1855598 1856505 1856510) (-1123 "SFQCMPK.spad" 1850215 1850235 1855568 1855573) (-1122 "SFORT.spad" 1849654 1849668 1850205 1850210) (-1121 "SEXOF.spad" 1849497 1849537 1849644 1849649) (-1120 "SEX.spad" 1849389 1849398 1849487 1849492) (-1119 "SEXCAT.spad" 1847170 1847210 1849379 1849384) (-1118 "SET.spad" 1845494 1845505 1846591 1846630) (-1117 "SETMN.spad" 1843944 1843961 1845484 1845489) (-1116 "SETCAT.spad" 1843266 1843275 1843934 1843939) (-1115 "SETCAT.spad" 1842586 1842597 1843256 1843261) (-1114 "SETAGG.spad" 1839135 1839146 1842566 1842581) (-1113 "SETAGG.spad" 1835692 1835705 1839125 1839130) (-1112 "SEQAST.spad" 1835395 1835404 1835682 1835687) (-1111 "SEGXCAT.spad" 1834551 1834564 1835385 1835390) (-1110 "SEG.spad" 1834364 1834375 1834470 1834475) (-1109 "SEGCAT.spad" 1833289 1833300 1834354 1834359) (-1108 "SEGBIND.spad" 1833047 1833058 1833236 1833241) (-1107 "SEGBIND2.spad" 1832745 1832758 1833037 1833042) (-1106 "SEGAST.spad" 1832459 1832468 1832735 1832740) (-1105 "SEG2.spad" 1831894 1831907 1832415 1832420) (-1104 "SDVAR.spad" 1831170 1831181 1831884 1831889) (-1103 "SDPOL.spad" 1828596 1828607 1828887 1829014) (-1102 "SCPKG.spad" 1826685 1826696 1828586 1828591) (-1101 "SCOPE.spad" 1825838 1825847 1826675 1826680) (-1100 "SCACHE.spad" 1824534 1824545 1825828 1825833) (-1099 "SASTCAT.spad" 1824443 1824452 1824524 1824529) (-1098 "SAOS.spad" 1824315 1824324 1824433 1824438) (-1097 "SAERFFC.spad" 1824028 1824048 1824305 1824310) (-1096 "SAE.spad" 1821982 1821998 1822593 1822728) (-1095 "SAEFACT.spad" 1821683 1821703 1821972 1821977) (-1094 "RURPK.spad" 1819342 1819358 1821673 1821678) (-1093 "RULESET.spad" 1818795 1818819 1819332 1819337) (-1092 "RULE.spad" 1817035 1817059 1818785 1818790) (-1091 "RULECOLD.spad" 1816887 1816900 1817025 1817030) (-1090 "RTVALUE.spad" 1816622 1816631 1816877 1816882) (-1089 "RSTRCAST.spad" 1816339 1816348 1816612 1816617) (-1088 "RSETGCD.spad" 1812717 1812737 1816329 1816334) (-1087 "RSETCAT.spad" 1802653 1802670 1812685 1812712) (-1086 "RSETCAT.spad" 1792609 1792628 1802643 1802648) (-1085 "RSDCMPK.spad" 1791061 1791081 1792599 1792604) (-1084 "RRCC.spad" 1789445 1789475 1791051 1791056) (-1083 "RRCC.spad" 1787827 1787859 1789435 1789440) (-1082 "RPTAST.spad" 1787529 1787538 1787817 1787822) (-1081 "RPOLCAT.spad" 1766889 1766904 1787397 1787524) (-1080 "RPOLCAT.spad" 1745962 1745979 1766472 1766477) (-1079 "ROUTINE.spad" 1741845 1741854 1744609 1744636) (-1078 "ROMAN.spad" 1741173 1741182 1741711 1741840) (-1077 "ROIRC.spad" 1740253 1740285 1741163 1741168) (-1076 "RNS.spad" 1739156 1739165 1740155 1740248) (-1075 "RNS.spad" 1738145 1738156 1739146 1739151) (-1074 "RNG.spad" 1737880 1737889 1738135 1738140) (-1073 "RNGBIND.spad" 1737040 1737054 1737835 1737840) (-1072 "RMODULE.spad" 1736805 1736816 1737030 1737035) (-1071 "RMCAT2.spad" 1736225 1736282 1736795 1736800) (-1070 "RMATRIX.spad" 1735049 1735068 1735392 1735431) (-1069 "RMATCAT.spad" 1730628 1730659 1735005 1735044) (-1068 "RMATCAT.spad" 1726097 1726130 1730476 1730481) (-1067 "RLINSET.spad" 1725652 1725663 1726087 1726092) (-1066 "RINTERP.spad" 1725540 1725560 1725642 1725647) (-1065 "RING.spad" 1725010 1725019 1725520 1725535) (-1064 "RING.spad" 1724488 1724499 1725000 1725005) (-1063 "RIDIST.spad" 1723880 1723889 1724478 1724483) (-1062 "RGCHAIN.spad" 1722463 1722479 1723365 1723392) (-1061 "RGBCSPC.spad" 1722244 1722256 1722453 1722458) (-1060 "RGBCMDL.spad" 1721774 1721786 1722234 1722239) (-1059 "RF.spad" 1719416 1719427 1721764 1721769) (-1058 "RFFACTOR.spad" 1718878 1718889 1719406 1719411) (-1057 "RFFACT.spad" 1718613 1718625 1718868 1718873) (-1056 "RFDIST.spad" 1717609 1717618 1718603 1718608) (-1055 "RETSOL.spad" 1717028 1717041 1717599 1717604) (-1054 "RETRACT.spad" 1716456 1716467 1717018 1717023) (-1053 "RETRACT.spad" 1715882 1715895 1716446 1716451) (-1052 "RETAST.spad" 1715694 1715703 1715872 1715877) (-1051 "RESULT.spad" 1713754 1713763 1714341 1714368) (-1050 "RESRING.spad" 1713101 1713148 1713692 1713749) (-1049 "RESLATC.spad" 1712425 1712436 1713091 1713096) (-1048 "REPSQ.spad" 1712156 1712167 1712415 1712420) (-1047 "REP.spad" 1709710 1709719 1712146 1712151) (-1046 "REPDB.spad" 1709417 1709428 1709700 1709705) (-1045 "REP2.spad" 1699075 1699086 1709259 1709264) (-1044 "REP1.spad" 1693271 1693282 1699025 1699030) (-1043 "REGSET.spad" 1691068 1691085 1692917 1692944) (-1042 "REF.spad" 1690403 1690414 1691023 1691028) (-1041 "REDORDER.spad" 1689609 1689626 1690393 1690398) (-1040 "RECLOS.spad" 1688392 1688412 1689096 1689189) (-1039 "REALSOLV.spad" 1687532 1687541 1688382 1688387) (-1038 "REAL.spad" 1687404 1687413 1687522 1687527) (-1037 "REAL0Q.spad" 1684702 1684717 1687394 1687399) (-1036 "REAL0.spad" 1681546 1681561 1684692 1684697) (-1035 "RDUCEAST.spad" 1681267 1681276 1681536 1681541) (-1034 "RDIV.spad" 1680922 1680947 1681257 1681262) (-1033 "RDIST.spad" 1680489 1680500 1680912 1680917) (-1032 "RDETRS.spad" 1679353 1679371 1680479 1680484) (-1031 "RDETR.spad" 1677492 1677510 1679343 1679348) (-1030 "RDEEFS.spad" 1676591 1676608 1677482 1677487) (-1029 "RDEEF.spad" 1675601 1675618 1676581 1676586) (-1028 "RCFIELD.spad" 1672787 1672796 1675503 1675596) (-1027 "RCFIELD.spad" 1670059 1670070 1672777 1672782) (-1026 "RCAGG.spad" 1667987 1667998 1670049 1670054) (-1025 "RCAGG.spad" 1665842 1665855 1667906 1667911) (-1024 "RATRET.spad" 1665202 1665213 1665832 1665837) (-1023 "RATFACT.spad" 1664894 1664906 1665192 1665197) (-1022 "RANDSRC.spad" 1664213 1664222 1664884 1664889) (-1021 "RADUTIL.spad" 1663969 1663978 1664203 1664208) (-1020 "RADIX.spad" 1660890 1660904 1662436 1662529) (-1019 "RADFF.spad" 1659047 1659084 1659166 1659322) (-1018 "RADCAT.spad" 1658642 1658651 1659037 1659042) (-1017 "RADCAT.spad" 1658235 1658246 1658632 1658637) (-1016 "QUEUE.spad" 1657583 1657594 1657842 1657869) (-1015 "QUAT.spad" 1655984 1655995 1656327 1656392) (-1014 "QUATCT2.spad" 1655604 1655623 1655974 1655979) (-1013 "QUATCAT.spad" 1653774 1653785 1655534 1655599) (-1012 "QUATCAT.spad" 1651695 1651708 1653457 1653462) (-1011 "QUAGG.spad" 1650522 1650533 1651663 1651690) (-1010 "QQUTAST.spad" 1650290 1650299 1650512 1650517) (-1009 "QFORM.spad" 1649908 1649923 1650280 1650285) (-1008 "QFCAT.spad" 1648610 1648621 1649810 1649903) (-1007 "QFCAT.spad" 1646903 1646916 1648105 1648110) (-1006 "QFCAT2.spad" 1646595 1646612 1646893 1646898) (-1005 "QEQUAT.spad" 1646153 1646162 1646585 1646590) (-1004 "QCMPACK.spad" 1640899 1640919 1646143 1646148) (-1003 "QALGSET.spad" 1636977 1637010 1640813 1640818) (-1002 "QALGSET2.spad" 1634972 1634991 1636967 1636972) (-1001 "PWFFINTB.spad" 1632387 1632409 1634962 1634967) (-1000 "PUSHVAR.spad" 1631725 1631745 1632377 1632382) (-999 "PTRANFN.spad" 1627853 1627863 1631715 1631720) (-998 "PTPACK.spad" 1624941 1624951 1627843 1627848) (-997 "PTFUNC2.spad" 1624764 1624778 1624931 1624936) (-996 "PTCAT.spad" 1624019 1624029 1624732 1624759) (-995 "PSQFR.spad" 1623326 1623350 1624009 1624014) (-994 "PSEUDLIN.spad" 1622212 1622222 1623316 1623321) (-993 "PSETPK.spad" 1607645 1607661 1622090 1622095) (-992 "PSETCAT.spad" 1601565 1601588 1607625 1607640) (-991 "PSETCAT.spad" 1595459 1595484 1601521 1601526) (-990 "PSCURVE.spad" 1594442 1594450 1595449 1595454) (-989 "PSCAT.spad" 1593225 1593254 1594340 1594437) (-988 "PSCAT.spad" 1592098 1592129 1593215 1593220) (-987 "PRTITION.spad" 1590796 1590804 1592088 1592093) (-986 "PRTDAST.spad" 1590515 1590523 1590786 1590791) (-985 "PRS.spad" 1580077 1580094 1590471 1590476) (-984 "PRQAGG.spad" 1579512 1579522 1580045 1580072) (-983 "PROPLOG.spad" 1579084 1579092 1579502 1579507) (-982 "PROPFUN2.spad" 1578707 1578720 1579074 1579079) (-981 "PROPFUN1.spad" 1578105 1578116 1578697 1578702) (-980 "PROPFRML.spad" 1576673 1576684 1578095 1578100) (-979 "PROPERTY.spad" 1576161 1576169 1576663 1576668) (-978 "PRODUCT.spad" 1573843 1573855 1574127 1574182) (-977 "PR.spad" 1572235 1572247 1572934 1573061) (-976 "PRINT.spad" 1571987 1571995 1572225 1572230) (-975 "PRIMES.spad" 1570240 1570250 1571977 1571982) (-974 "PRIMELT.spad" 1568321 1568335 1570230 1570235) (-973 "PRIMCAT.spad" 1567948 1567956 1568311 1568316) (-972 "PRIMARR.spad" 1566953 1566963 1567131 1567158) (-971 "PRIMARR2.spad" 1565720 1565732 1566943 1566948) (-970 "PREASSOC.spad" 1565102 1565114 1565710 1565715) (-969 "PPCURVE.spad" 1564239 1564247 1565092 1565097) (-968 "PORTNUM.spad" 1564014 1564022 1564229 1564234) (-967 "POLYROOT.spad" 1562863 1562885 1563970 1563975) (-966 "POLY.spad" 1560198 1560208 1560713 1560840) (-965 "POLYLIFT.spad" 1559463 1559486 1560188 1560193) (-964 "POLYCATQ.spad" 1557581 1557603 1559453 1559458) (-963 "POLYCAT.spad" 1551051 1551072 1557449 1557576) (-962 "POLYCAT.spad" 1543859 1543882 1550259 1550264) (-961 "POLY2UP.spad" 1543311 1543325 1543849 1543854) (-960 "POLY2.spad" 1542908 1542920 1543301 1543306) (-959 "POLUTIL.spad" 1541849 1541878 1542864 1542869) (-958 "POLTOPOL.spad" 1540597 1540612 1541839 1541844) (-957 "POINT.spad" 1539435 1539445 1539522 1539549) (-956 "PNTHEORY.spad" 1536137 1536145 1539425 1539430) (-955 "PMTOOLS.spad" 1534912 1534926 1536127 1536132) (-954 "PMSYM.spad" 1534461 1534471 1534902 1534907) (-953 "PMQFCAT.spad" 1534052 1534066 1534451 1534456) (-952 "PMPRED.spad" 1533531 1533545 1534042 1534047) (-951 "PMPREDFS.spad" 1532985 1533007 1533521 1533526) (-950 "PMPLCAT.spad" 1532065 1532083 1532917 1532922) (-949 "PMLSAGG.spad" 1531650 1531664 1532055 1532060) (-948 "PMKERNEL.spad" 1531229 1531241 1531640 1531645) (-947 "PMINS.spad" 1530809 1530819 1531219 1531224) (-946 "PMFS.spad" 1530386 1530404 1530799 1530804) (-945 "PMDOWN.spad" 1529676 1529690 1530376 1530381) (-944 "PMASS.spad" 1528686 1528694 1529666 1529671) (-943 "PMASSFS.spad" 1527653 1527669 1528676 1528681) (-942 "PLOTTOOL.spad" 1527433 1527441 1527643 1527648) (-941 "PLOT.spad" 1522356 1522364 1527423 1527428) (-940 "PLOT3D.spad" 1518820 1518828 1522346 1522351) (-939 "PLOT1.spad" 1517977 1517987 1518810 1518815) (-938 "PLEQN.spad" 1505267 1505294 1517967 1517972) (-937 "PINTERP.spad" 1504889 1504908 1505257 1505262) (-936 "PINTERPA.spad" 1504673 1504689 1504879 1504884) (-935 "PI.spad" 1504282 1504290 1504647 1504668) (-934 "PID.spad" 1503252 1503260 1504208 1504277) (-933 "PICOERCE.spad" 1502909 1502919 1503242 1503247) (-932 "PGROEB.spad" 1501510 1501524 1502899 1502904) (-931 "PGE.spad" 1493127 1493135 1501500 1501505) (-930 "PGCD.spad" 1492017 1492034 1493117 1493122) (-929 "PFRPAC.spad" 1491166 1491176 1492007 1492012) (-928 "PFR.spad" 1487829 1487839 1491068 1491161) (-927 "PFOTOOLS.spad" 1487087 1487103 1487819 1487824) (-926 "PFOQ.spad" 1486457 1486475 1487077 1487082) (-925 "PFO.spad" 1485876 1485903 1486447 1486452) (-924 "PF.spad" 1485450 1485462 1485681 1485774) (-923 "PFECAT.spad" 1483132 1483140 1485376 1485445) (-922 "PFECAT.spad" 1480842 1480852 1483088 1483093) (-921 "PFBRU.spad" 1478730 1478742 1480832 1480837) (-920 "PFBR.spad" 1476290 1476313 1478720 1478725) (-919 "PERM.spad" 1472097 1472107 1476120 1476135) (-918 "PERMGRP.spad" 1466867 1466877 1472087 1472092) (-917 "PERMCAT.spad" 1465528 1465538 1466847 1466862) (-916 "PERMAN.spad" 1464060 1464074 1465518 1465523) (-915 "PENDTREE.spad" 1463401 1463411 1463689 1463694) (-914 "PDSPC.spad" 1462214 1462224 1463391 1463396) (-913 "PDSPC.spad" 1461025 1461037 1462204 1462209) (-912 "PDRING.spad" 1460867 1460877 1461005 1461020) (-911 "PDEPROB.spad" 1459882 1459890 1460857 1460862) (-910 "PDEPACK.spad" 1453922 1453930 1459872 1459877) (-909 "PDECOMP.spad" 1453392 1453409 1453912 1453917) (-908 "PDECAT.spad" 1451748 1451756 1453382 1453387) (-907 "PDDOM.spad" 1451186 1451199 1451738 1451743) (-906 "PDDOM.spad" 1450622 1450637 1451176 1451181) (-905 "PCOMP.spad" 1450475 1450488 1450612 1450617) (-904 "PBWLB.spad" 1449063 1449080 1450465 1450470) (-903 "PATTERN.spad" 1443602 1443612 1449053 1449058) (-902 "PATTERN2.spad" 1443340 1443352 1443592 1443597) (-901 "PATTERN1.spad" 1441676 1441692 1443330 1443335) (-900 "PATRES.spad" 1439251 1439263 1441666 1441671) (-899 "PATRES2.spad" 1438923 1438937 1439241 1439246) (-898 "PATMATCH.spad" 1437120 1437151 1438631 1438636) (-897 "PATMAB.spad" 1436549 1436559 1437110 1437115) (-896 "PATLRES.spad" 1435635 1435649 1436539 1436544) (-895 "PATAB.spad" 1435399 1435409 1435625 1435630) (-894 "PARTPERM.spad" 1433407 1433415 1435389 1435394) (-893 "PARSURF.spad" 1432841 1432869 1433397 1433402) (-892 "PARSU2.spad" 1432638 1432654 1432831 1432836) (-891 "script-parser.spad" 1432158 1432166 1432628 1432633) (-890 "PARSCURV.spad" 1431592 1431620 1432148 1432153) (-889 "PARSC2.spad" 1431383 1431399 1431582 1431587) (-888 "PARPCURV.spad" 1430845 1430873 1431373 1431378) (-887 "PARPC2.spad" 1430636 1430652 1430835 1430840) (-886 "PARAMAST.spad" 1429764 1429772 1430626 1430631) (-885 "PAN2EXPR.spad" 1429176 1429184 1429754 1429759) (-884 "PALETTE.spad" 1428146 1428154 1429166 1429171) (-883 "PAIR.spad" 1427133 1427146 1427734 1427739) (-882 "PADICRC.spad" 1424467 1424485 1425638 1425731) (-881 "PADICRAT.spad" 1422482 1422494 1422703 1422796) (-880 "PADIC.spad" 1422177 1422189 1422408 1422477) (-879 "PADICCT.spad" 1420726 1420738 1422103 1422172) (-878 "PADEPAC.spad" 1419415 1419434 1420716 1420721) (-877 "PADE.spad" 1418167 1418183 1419405 1419410) (-876 "OWP.spad" 1417407 1417437 1418025 1418092) (-875 "OVERSET.spad" 1416980 1416988 1417397 1417402) (-874 "OVAR.spad" 1416761 1416784 1416970 1416975) (-873 "OUT.spad" 1415847 1415855 1416751 1416756) (-872 "OUTFORM.spad" 1405239 1405247 1415837 1415842) (-871 "OUTBFILE.spad" 1404657 1404665 1405229 1405234) (-870 "OUTBCON.spad" 1403663 1403671 1404647 1404652) (-869 "OUTBCON.spad" 1402667 1402677 1403653 1403658) (-868 "OSI.spad" 1402142 1402150 1402657 1402662) (-867 "OSGROUP.spad" 1402060 1402068 1402132 1402137) (-866 "ORTHPOL.spad" 1400545 1400555 1401977 1401982) (-865 "OREUP.spad" 1399998 1400026 1400225 1400264) (-864 "ORESUP.spad" 1399299 1399323 1399678 1399717) (-863 "OREPCTO.spad" 1397156 1397168 1399219 1399224) (-862 "OREPCAT.spad" 1391303 1391313 1397112 1397151) (-861 "OREPCAT.spad" 1385340 1385352 1391151 1391156) (-860 "ORDSET.spad" 1384512 1384520 1385330 1385335) (-859 "ORDSET.spad" 1383682 1383692 1384502 1384507) (-858 "ORDRING.spad" 1383072 1383080 1383662 1383677) (-857 "ORDRING.spad" 1382470 1382480 1383062 1383067) (-856 "ORDMON.spad" 1382325 1382333 1382460 1382465) (-855 "ORDFUNS.spad" 1381457 1381473 1382315 1382320) (-854 "ORDFIN.spad" 1381277 1381285 1381447 1381452) (-853 "ORDCOMP.spad" 1379742 1379752 1380824 1380853) (-852 "ORDCOMP2.spad" 1379035 1379047 1379732 1379737) (-851 "OPTPROB.spad" 1377673 1377681 1379025 1379030) (-850 "OPTPACK.spad" 1370082 1370090 1377663 1377668) (-849 "OPTCAT.spad" 1367761 1367769 1370072 1370077) (-848 "OPSIG.spad" 1367415 1367423 1367751 1367756) (-847 "OPQUERY.spad" 1366964 1366972 1367405 1367410) (-846 "OP.spad" 1366706 1366716 1366786 1366853) (-845 "OPERCAT.spad" 1366172 1366182 1366696 1366701) (-844 "OPERCAT.spad" 1365636 1365648 1366162 1366167) (-843 "ONECOMP.spad" 1364381 1364391 1365183 1365212) (-842 "ONECOMP2.spad" 1363805 1363817 1364371 1364376) (-841 "OMSERVER.spad" 1362811 1362819 1363795 1363800) (-840 "OMSAGG.spad" 1362599 1362609 1362767 1362806) (-839 "OMPKG.spad" 1361215 1361223 1362589 1362594) (-838 "OM.spad" 1360188 1360196 1361205 1361210) (-837 "OMLO.spad" 1359613 1359625 1360074 1360113) (-836 "OMEXPR.spad" 1359447 1359457 1359603 1359608) (-835 "OMERR.spad" 1358992 1359000 1359437 1359442) (-834 "OMERRK.spad" 1358026 1358034 1358982 1358987) (-833 "OMENC.spad" 1357370 1357378 1358016 1358021) (-832 "OMDEV.spad" 1351679 1351687 1357360 1357365) (-831 "OMCONN.spad" 1351088 1351096 1351669 1351674) (-830 "OINTDOM.spad" 1350851 1350859 1351014 1351083) (-829 "OFMONOID.spad" 1348974 1348984 1350807 1350812) (-828 "ODVAR.spad" 1348235 1348245 1348964 1348969) (-827 "ODR.spad" 1347879 1347905 1348047 1348196) (-826 "ODPOL.spad" 1345261 1345271 1345601 1345728) (-825 "ODP.spad" 1335343 1335363 1335716 1335847) (-824 "ODETOOLS.spad" 1333992 1334011 1335333 1335338) (-823 "ODESYS.spad" 1331686 1331703 1333982 1333987) (-822 "ODERTRIC.spad" 1327695 1327712 1331643 1331648) (-821 "ODERED.spad" 1327094 1327118 1327685 1327690) (-820 "ODERAT.spad" 1324709 1324726 1327084 1327089) (-819 "ODEPRRIC.spad" 1321746 1321768 1324699 1324704) (-818 "ODEPROB.spad" 1321003 1321011 1321736 1321741) (-817 "ODEPRIM.spad" 1318337 1318359 1320993 1320998) (-816 "ODEPAL.spad" 1317723 1317747 1318327 1318332) (-815 "ODEPACK.spad" 1304389 1304397 1317713 1317718) (-814 "ODEINT.spad" 1303824 1303840 1304379 1304384) (-813 "ODEIFTBL.spad" 1301219 1301227 1303814 1303819) (-812 "ODEEF.spad" 1296710 1296726 1301209 1301214) (-811 "ODECONST.spad" 1296247 1296265 1296700 1296705) (-810 "ODECAT.spad" 1294845 1294853 1296237 1296242) (-809 "OCT.spad" 1292981 1292991 1293695 1293734) (-808 "OCTCT2.spad" 1292627 1292648 1292971 1292976) (-807 "OC.spad" 1290423 1290433 1292583 1292622) (-806 "OC.spad" 1287944 1287956 1290106 1290111) (-805 "OCAMON.spad" 1287792 1287800 1287934 1287939) (-804 "OASGP.spad" 1287607 1287615 1287782 1287787) (-803 "OAMONS.spad" 1287129 1287137 1287597 1287602) (-802 "OAMON.spad" 1286990 1286998 1287119 1287124) (-801 "OAGROUP.spad" 1286852 1286860 1286980 1286985) (-800 "NUMTUBE.spad" 1286443 1286459 1286842 1286847) (-799 "NUMQUAD.spad" 1274419 1274427 1286433 1286438) (-798 "NUMODE.spad" 1265773 1265781 1274409 1274414) (-797 "NUMINT.spad" 1263339 1263347 1265763 1265768) (-796 "NUMFMT.spad" 1262179 1262187 1263329 1263334) (-795 "NUMERIC.spad" 1254293 1254303 1261984 1261989) (-794 "NTSCAT.spad" 1252801 1252817 1254261 1254288) (-793 "NTPOLFN.spad" 1252352 1252362 1252718 1252723) (-792 "NSUP.spad" 1245398 1245408 1249938 1250091) (-791 "NSUP2.spad" 1244790 1244802 1245388 1245393) (-790 "NSMP.spad" 1241020 1241039 1241328 1241455) (-789 "NREP.spad" 1239398 1239412 1241010 1241015) (-788 "NPCOEF.spad" 1238644 1238664 1239388 1239393) (-787 "NORMRETR.spad" 1238242 1238281 1238634 1238639) (-786 "NORMPK.spad" 1236144 1236163 1238232 1238237) (-785 "NORMMA.spad" 1235832 1235858 1236134 1236139) (-784 "NONE.spad" 1235573 1235581 1235822 1235827) (-783 "NONE1.spad" 1235249 1235259 1235563 1235568) (-782 "NODE1.spad" 1234736 1234752 1235239 1235244) (-781 "NNI.spad" 1233631 1233639 1234710 1234731) (-780 "NLINSOL.spad" 1232257 1232267 1233621 1233626) (-779 "NIPROB.spad" 1230798 1230806 1232247 1232252) (-778 "NFINTBAS.spad" 1228358 1228375 1230788 1230793) (-777 "NETCLT.spad" 1228332 1228343 1228348 1228353) (-776 "NCODIV.spad" 1226548 1226564 1228322 1228327) (-775 "NCNTFRAC.spad" 1226190 1226204 1226538 1226543) (-774 "NCEP.spad" 1224356 1224370 1226180 1226185) (-773 "NASRING.spad" 1223952 1223960 1224346 1224351) (-772 "NASRING.spad" 1223546 1223556 1223942 1223947) (-771 "NARNG.spad" 1222898 1222906 1223536 1223541) (-770 "NARNG.spad" 1222248 1222258 1222888 1222893) (-769 "NAGSP.spad" 1221325 1221333 1222238 1222243) (-768 "NAGS.spad" 1210986 1210994 1221315 1221320) (-767 "NAGF07.spad" 1209417 1209425 1210976 1210981) (-766 "NAGF04.spad" 1203819 1203827 1209407 1209412) (-765 "NAGF02.spad" 1197888 1197896 1203809 1203814) (-764 "NAGF01.spad" 1193649 1193657 1197878 1197883) (-763 "NAGE04.spad" 1187349 1187357 1193639 1193644) (-762 "NAGE02.spad" 1178009 1178017 1187339 1187344) (-761 "NAGE01.spad" 1174011 1174019 1177999 1178004) (-760 "NAGD03.spad" 1172015 1172023 1174001 1174006) (-759 "NAGD02.spad" 1164762 1164770 1172005 1172010) (-758 "NAGD01.spad" 1159055 1159063 1164752 1164757) (-757 "NAGC06.spad" 1154930 1154938 1159045 1159050) (-756 "NAGC05.spad" 1153431 1153439 1154920 1154925) (-755 "NAGC02.spad" 1152698 1152706 1153421 1153426) (-754 "NAALG.spad" 1152239 1152249 1152666 1152693) (-753 "NAALG.spad" 1151800 1151812 1152229 1152234) (-752 "MULTSQFR.spad" 1148758 1148775 1151790 1151795) (-751 "MULTFACT.spad" 1148141 1148158 1148748 1148753) (-750 "MTSCAT.spad" 1146235 1146256 1148039 1148136) (-749 "MTHING.spad" 1145894 1145904 1146225 1146230) (-748 "MSYSCMD.spad" 1145328 1145336 1145884 1145889) (-747 "MSET.spad" 1143286 1143296 1145034 1145073) (-746 "MSETAGG.spad" 1143131 1143141 1143254 1143281) (-745 "MRING.spad" 1140108 1140120 1142839 1142906) (-744 "MRF2.spad" 1139678 1139692 1140098 1140103) (-743 "MRATFAC.spad" 1139224 1139241 1139668 1139673) (-742 "MPRFF.spad" 1137264 1137283 1139214 1139219) (-741 "MPOLY.spad" 1134735 1134750 1135094 1135221) (-740 "MPCPF.spad" 1133999 1134018 1134725 1134730) (-739 "MPC3.spad" 1133816 1133856 1133989 1133994) (-738 "MPC2.spad" 1133462 1133495 1133806 1133811) (-737 "MONOTOOL.spad" 1131813 1131830 1133452 1133457) (-736 "MONOID.spad" 1131132 1131140 1131803 1131808) (-735 "MONOID.spad" 1130449 1130459 1131122 1131127) (-734 "MONOGEN.spad" 1129197 1129210 1130309 1130444) (-733 "MONOGEN.spad" 1127967 1127982 1129081 1129086) (-732 "MONADWU.spad" 1125997 1126005 1127957 1127962) (-731 "MONADWU.spad" 1124025 1124035 1125987 1125992) (-730 "MONAD.spad" 1123185 1123193 1124015 1124020) (-729 "MONAD.spad" 1122343 1122353 1123175 1123180) (-728 "MOEBIUS.spad" 1121079 1121093 1122323 1122338) (-727 "MODULE.spad" 1120949 1120959 1121047 1121074) (-726 "MODULE.spad" 1120839 1120851 1120939 1120944) (-725 "MODRING.spad" 1120174 1120213 1120819 1120834) (-724 "MODOP.spad" 1118839 1118851 1119996 1120063) (-723 "MODMONOM.spad" 1118570 1118588 1118829 1118834) (-722 "MODMON.spad" 1115365 1115381 1116084 1116237) (-721 "MODFIELD.spad" 1114727 1114766 1115267 1115360) (-720 "MMLFORM.spad" 1113587 1113595 1114717 1114722) (-719 "MMAP.spad" 1113329 1113363 1113577 1113582) (-718 "MLO.spad" 1111788 1111798 1113285 1113324) (-717 "MLIFT.spad" 1110400 1110417 1111778 1111783) (-716 "MKUCFUNC.spad" 1109935 1109953 1110390 1110395) (-715 "MKRECORD.spad" 1109539 1109552 1109925 1109930) (-714 "MKFUNC.spad" 1108946 1108956 1109529 1109534) (-713 "MKFLCFN.spad" 1107914 1107924 1108936 1108941) (-712 "MKBCFUNC.spad" 1107409 1107427 1107904 1107909) (-711 "MINT.spad" 1106848 1106856 1107311 1107404) (-710 "MHROWRED.spad" 1105359 1105369 1106838 1106843) (-709 "MFLOAT.spad" 1103879 1103887 1105249 1105354) (-708 "MFINFACT.spad" 1103279 1103301 1103869 1103874) (-707 "MESH.spad" 1101061 1101069 1103269 1103274) (-706 "MDDFACT.spad" 1099272 1099282 1101051 1101056) (-705 "MDAGG.spad" 1098563 1098573 1099252 1099267) (-704 "MCMPLX.spad" 1094574 1094582 1095188 1095389) (-703 "MCDEN.spad" 1093784 1093796 1094564 1094569) (-702 "MCALCFN.spad" 1090906 1090932 1093774 1093779) (-701 "MAYBE.spad" 1090190 1090201 1090896 1090901) (-700 "MATSTOR.spad" 1087498 1087508 1090180 1090185) (-699 "MATRIX.spad" 1086202 1086212 1086686 1086713) (-698 "MATLIN.spad" 1083546 1083570 1086086 1086091) (-697 "MATCAT.spad" 1075275 1075297 1083514 1083541) (-696 "MATCAT.spad" 1066876 1066900 1075117 1075122) (-695 "MATCAT2.spad" 1066158 1066206 1066866 1066871) (-694 "MAPPKG3.spad" 1065073 1065087 1066148 1066153) (-693 "MAPPKG2.spad" 1064411 1064423 1065063 1065068) (-692 "MAPPKG1.spad" 1063239 1063249 1064401 1064406) (-691 "MAPPAST.spad" 1062554 1062562 1063229 1063234) (-690 "MAPHACK3.spad" 1062366 1062380 1062544 1062549) (-689 "MAPHACK2.spad" 1062135 1062147 1062356 1062361) (-688 "MAPHACK1.spad" 1061779 1061789 1062125 1062130) (-687 "MAGMA.spad" 1059569 1059586 1061769 1061774) (-686 "MACROAST.spad" 1059148 1059156 1059559 1059564) (-685 "M3D.spad" 1056868 1056878 1058526 1058531) (-684 "LZSTAGG.spad" 1054106 1054116 1056858 1056863) (-683 "LZSTAGG.spad" 1051342 1051354 1054096 1054101) (-682 "LWORD.spad" 1048047 1048064 1051332 1051337) (-681 "LSTAST.spad" 1047831 1047839 1048037 1048042) (-680 "LSQM.spad" 1046117 1046131 1046511 1046562) (-679 "LSPP.spad" 1045652 1045669 1046107 1046112) (-678 "LSMP.spad" 1044502 1044530 1045642 1045647) (-677 "LSMP1.spad" 1042320 1042334 1044492 1044497) (-676 "LSAGG.spad" 1041989 1041999 1042288 1042315) (-675 "LSAGG.spad" 1041678 1041690 1041979 1041984) (-674 "LPOLY.spad" 1040632 1040651 1041534 1041603) (-673 "LPEFRAC.spad" 1039903 1039913 1040622 1040627) (-672 "LO.spad" 1039304 1039318 1039837 1039864) (-671 "LOGIC.spad" 1038906 1038914 1039294 1039299) (-670 "LOGIC.spad" 1038506 1038516 1038896 1038901) (-669 "LODOOPS.spad" 1037436 1037448 1038496 1038501) (-668 "LODO.spad" 1036820 1036836 1037116 1037155) (-667 "LODOF.spad" 1035866 1035883 1036777 1036782) (-666 "LODOCAT.spad" 1034532 1034542 1035822 1035861) (-665 "LODOCAT.spad" 1033196 1033208 1034488 1034493) (-664 "LODO2.spad" 1032469 1032481 1032876 1032915) (-663 "LODO1.spad" 1031869 1031879 1032149 1032188) (-662 "LODEEF.spad" 1030671 1030689 1031859 1031864) (-661 "LNAGG.spad" 1026818 1026828 1030661 1030666) (-660 "LNAGG.spad" 1022929 1022941 1026774 1026779) (-659 "LMOPS.spad" 1019697 1019714 1022919 1022924) (-658 "LMODULE.spad" 1019465 1019475 1019687 1019692) (-657 "LMDICT.spad" 1018752 1018762 1019016 1019043) (-656 "LLINSET.spad" 1018310 1018320 1018742 1018747) (-655 "LITERAL.spad" 1018216 1018227 1018300 1018305) (-654 "LIST.spad" 1015951 1015961 1017363 1017390) (-653 "LIST3.spad" 1015262 1015276 1015941 1015946) (-652 "LIST2.spad" 1013964 1013976 1015252 1015257) (-651 "LIST2MAP.spad" 1010867 1010879 1013954 1013959) (-650 "LINSET.spad" 1010646 1010656 1010857 1010862) (-649 "LINEXP.spad" 1009784 1009794 1010636 1010641) (-648 "LINDEP.spad" 1008593 1008605 1009696 1009701) (-647 "LIMITRF.spad" 1006521 1006531 1008583 1008588) (-646 "LIMITPS.spad" 1005424 1005437 1006511 1006516) (-645 "LIE.spad" 1003440 1003452 1004714 1004859) (-644 "LIECAT.spad" 1002916 1002926 1003366 1003435) (-643 "LIECAT.spad" 1002420 1002432 1002872 1002877) (-642 "LIB.spad" 1000633 1000641 1001079 1001094) (-641 "LGROBP.spad" 997986 998005 1000623 1000628) (-640 "LF.spad" 996941 996957 997976 997981) (-639 "LFCAT.spad" 996000 996008 996931 996936) (-638 "LEXTRIPK.spad" 991503 991518 995990 995995) (-637 "LEXP.spad" 989506 989533 991483 991498) (-636 "LETAST.spad" 989205 989213 989496 989501) (-635 "LEADCDET.spad" 987603 987620 989195 989200) (-634 "LAZM3PK.spad" 986307 986329 987593 987598) (-633 "LAUPOL.spad" 984899 984912 985799 985868) (-632 "LAPLACE.spad" 984482 984498 984889 984894) (-631 "LA.spad" 983922 983936 984404 984443) (-630 "LALG.spad" 983698 983708 983902 983917) (-629 "LALG.spad" 983482 983494 983688 983693) (-628 "KVTFROM.spad" 983217 983227 983472 983477) (-627 "KTVLOGIC.spad" 982729 982737 983207 983212) (-626 "KRCFROM.spad" 982467 982477 982719 982724) (-625 "KOVACIC.spad" 981190 981207 982457 982462) (-624 "KONVERT.spad" 980912 980922 981180 981185) (-623 "KOERCE.spad" 980649 980659 980902 980907) (-622 "KERNEL.spad" 979304 979314 980433 980438) (-621 "KERNEL2.spad" 979007 979019 979294 979299) (-620 "KDAGG.spad" 978116 978138 978987 979002) (-619 "KDAGG.spad" 977233 977257 978106 978111) (-618 "KAFILE.spad" 976196 976212 976431 976458) (-617 "JORDAN.spad" 974025 974037 975486 975631) (-616 "JOINAST.spad" 973719 973727 974015 974020) (-615 "JAVACODE.spad" 973585 973593 973709 973714) (-614 "IXAGG.spad" 971718 971742 973575 973580) (-613 "IXAGG.spad" 969706 969732 971565 971570) (-612 "IVECTOR.spad" 968476 968491 968631 968658) (-611 "ITUPLE.spad" 967637 967647 968466 968471) (-610 "ITRIGMNP.spad" 966476 966495 967627 967632) (-609 "ITFUN3.spad" 965982 965996 966466 966471) (-608 "ITFUN2.spad" 965726 965738 965972 965977) (-607 "ITFORM.spad" 965081 965089 965716 965721) (-606 "ITAYLOR.spad" 963075 963090 964945 965042) (-605 "ISUPS.spad" 955512 955527 962049 962146) (-604 "ISUMP.spad" 955013 955029 955502 955507) (-603 "ISTRING.spad" 954101 954114 954182 954209) (-602 "ISAST.spad" 953820 953828 954091 954096) (-601 "IRURPK.spad" 952537 952556 953810 953815) (-600 "IRSN.spad" 950509 950517 952527 952532) (-599 "IRRF2F.spad" 948994 949004 950465 950470) (-598 "IRREDFFX.spad" 948595 948606 948984 948989) (-597 "IROOT.spad" 946934 946944 948585 948590) (-596 "IR.spad" 944735 944749 946789 946816) (-595 "IRFORM.spad" 944059 944067 944725 944730) (-594 "IR2.spad" 943087 943103 944049 944054) (-593 "IR2F.spad" 942293 942309 943077 943082) (-592 "IPRNTPK.spad" 942053 942061 942283 942288) (-591 "IPF.spad" 941618 941630 941858 941951) (-590 "IPADIC.spad" 941379 941405 941544 941613) (-589 "IP4ADDR.spad" 940936 940944 941369 941374) (-588 "IOMODE.spad" 940458 940466 940926 940931) (-587 "IOBFILE.spad" 939819 939827 940448 940453) (-586 "IOBCON.spad" 939684 939692 939809 939814) (-585 "INVLAPLA.spad" 939333 939349 939674 939679) (-584 "INTTR.spad" 932715 932732 939323 939328) (-583 "INTTOOLS.spad" 930470 930486 932289 932294) (-582 "INTSLPE.spad" 929790 929798 930460 930465) (-581 "INTRVL.spad" 929356 929366 929704 929785) (-580 "INTRF.spad" 927780 927794 929346 929351) (-579 "INTRET.spad" 927212 927222 927770 927775) (-578 "INTRAT.spad" 925939 925956 927202 927207) (-577 "INTPM.spad" 924324 924340 925582 925587) (-576 "INTPAF.spad" 922188 922206 924256 924261) (-575 "INTPACK.spad" 912562 912570 922178 922183) (-574 "INT.spad" 912010 912018 912416 912557) (-573 "INTHERTR.spad" 911284 911301 912000 912005) (-572 "INTHERAL.spad" 910954 910978 911274 911279) (-571 "INTHEORY.spad" 907393 907401 910944 910949) (-570 "INTG0.spad" 901126 901144 907325 907330) (-569 "INTFTBL.spad" 895155 895163 901116 901121) (-568 "INTFACT.spad" 894214 894224 895145 895150) (-567 "INTEF.spad" 892599 892615 894204 894209) (-566 "INTDOM.spad" 891222 891230 892525 892594) (-565 "INTDOM.spad" 889907 889917 891212 891217) (-564 "INTCAT.spad" 888166 888176 889821 889902) (-563 "INTBIT.spad" 887673 887681 888156 888161) (-562 "INTALG.spad" 886861 886888 887663 887668) (-561 "INTAF.spad" 886361 886377 886851 886856) (-560 "INTABL.spad" 884879 884910 885042 885069) (-559 "INT8.spad" 884759 884767 884869 884874) (-558 "INT64.spad" 884638 884646 884749 884754) (-557 "INT32.spad" 884517 884525 884628 884633) (-556 "INT16.spad" 884396 884404 884507 884512) (-555 "INS.spad" 881899 881907 884298 884391) (-554 "INS.spad" 879488 879498 881889 881894) (-553 "INPSIGN.spad" 878936 878949 879478 879483) (-552 "INPRODPF.spad" 878032 878051 878926 878931) (-551 "INPRODFF.spad" 877120 877144 878022 878027) (-550 "INNMFACT.spad" 876095 876112 877110 877115) (-549 "INMODGCD.spad" 875583 875613 876085 876090) (-548 "INFSP.spad" 873880 873902 875573 875578) (-547 "INFPROD0.spad" 872960 872979 873870 873875) (-546 "INFORM.spad" 870159 870167 872950 872955) (-545 "INFORM1.spad" 869784 869794 870149 870154) (-544 "INFINITY.spad" 869336 869344 869774 869779) (-543 "INETCLTS.spad" 869313 869321 869326 869331) (-542 "INEP.spad" 867851 867873 869303 869308) (-541 "INDE.spad" 867580 867597 867841 867846) (-540 "INCRMAPS.spad" 867001 867011 867570 867575) (-539 "INBFILE.spad" 866073 866081 866991 866996) (-538 "INBFF.spad" 861867 861878 866063 866068) (-537 "INBCON.spad" 860157 860165 861857 861862) (-536 "INBCON.spad" 858445 858455 860147 860152) (-535 "INAST.spad" 858106 858114 858435 858440) (-534 "IMPTAST.spad" 857814 857822 858096 858101) (-533 "IMATRIX.spad" 856759 856785 857271 857298) (-532 "IMATQF.spad" 855853 855897 856715 856720) (-531 "IMATLIN.spad" 854458 854482 855809 855814) (-530 "ILIST.spad" 853116 853131 853641 853668) (-529 "IIARRAY2.spad" 852504 852542 852723 852750) (-528 "IFF.spad" 851914 851930 852185 852278) (-527 "IFAST.spad" 851528 851536 851904 851909) (-526 "IFARRAY.spad" 849021 849036 850711 850738) (-525 "IFAMON.spad" 848883 848900 848977 848982) (-524 "IEVALAB.spad" 848288 848300 848873 848878) (-523 "IEVALAB.spad" 847691 847705 848278 848283) (-522 "IDPO.spad" 847489 847501 847681 847686) (-521 "IDPOAMS.spad" 847245 847257 847479 847484) (-520 "IDPOAM.spad" 846965 846977 847235 847240) (-519 "IDPC.spad" 845903 845915 846955 846960) (-518 "IDPAM.spad" 845648 845660 845893 845898) (-517 "IDPAG.spad" 845395 845407 845638 845643) (-516 "IDENT.spad" 845045 845053 845385 845390) (-515 "IDECOMP.spad" 842284 842302 845035 845040) (-514 "IDEAL.spad" 837233 837272 842219 842224) (-513 "ICDEN.spad" 836422 836438 837223 837228) (-512 "ICARD.spad" 835613 835621 836412 836417) (-511 "IBPTOOLS.spad" 834220 834237 835603 835608) (-510 "IBITS.spad" 833423 833436 833856 833883) (-509 "IBATOOL.spad" 830400 830419 833413 833418) (-508 "IBACHIN.spad" 828907 828922 830390 830395) (-507 "IARRAY2.spad" 827895 827921 828514 828541) (-506 "IARRAY1.spad" 826940 826955 827078 827105) (-505 "IAN.spad" 825163 825171 826756 826849) (-504 "IALGFACT.spad" 824766 824799 825153 825158) (-503 "HYPCAT.spad" 824190 824198 824756 824761) (-502 "HYPCAT.spad" 823612 823622 824180 824185) (-501 "HOSTNAME.spad" 823420 823428 823602 823607) (-500 "HOMOTOP.spad" 823163 823173 823410 823415) (-499 "HOAGG.spad" 820445 820455 823153 823158) (-498 "HOAGG.spad" 817502 817514 820212 820217) (-497 "HEXADEC.spad" 815604 815612 815969 816062) (-496 "HEUGCD.spad" 814639 814650 815594 815599) (-495 "HELLFDIV.spad" 814229 814253 814629 814634) (-494 "HEAP.spad" 813621 813631 813836 813863) (-493 "HEADAST.spad" 813154 813162 813611 813616) (-492 "HDP.spad" 803232 803248 803609 803740) (-491 "HDMP.spad" 800446 800461 801062 801189) (-490 "HB.spad" 798697 798705 800436 800441) (-489 "HASHTBL.spad" 797167 797198 797378 797405) (-488 "HASAST.spad" 796883 796891 797157 797162) (-487 "HACKPI.spad" 796374 796382 796785 796878) (-486 "GTSET.spad" 795313 795329 796020 796047) (-485 "GSTBL.spad" 793832 793867 794006 794021) (-484 "GSERIES.spad" 791003 791030 791964 792113) (-483 "GROUP.spad" 790276 790284 790983 790998) (-482 "GROUP.spad" 789557 789567 790266 790271) (-481 "GROEBSOL.spad" 788051 788072 789547 789552) (-480 "GRMOD.spad" 786622 786634 788041 788046) (-479 "GRMOD.spad" 785191 785205 786612 786617) (-478 "GRIMAGE.spad" 778080 778088 785181 785186) (-477 "GRDEF.spad" 776459 776467 778070 778075) (-476 "GRAY.spad" 774922 774930 776449 776454) (-475 "GRALG.spad" 773999 774011 774912 774917) (-474 "GRALG.spad" 773074 773088 773989 773994) (-473 "GPOLSET.spad" 772528 772551 772756 772783) (-472 "GOSPER.spad" 771797 771815 772518 772523) (-471 "GMODPOL.spad" 770945 770972 771765 771792) (-470 "GHENSEL.spad" 770028 770042 770935 770940) (-469 "GENUPS.spad" 766321 766334 770018 770023) (-468 "GENUFACT.spad" 765898 765908 766311 766316) (-467 "GENPGCD.spad" 765484 765501 765888 765893) (-466 "GENMFACT.spad" 764936 764955 765474 765479) (-465 "GENEEZ.spad" 762887 762900 764926 764931) (-464 "GDMP.spad" 759943 759960 760717 760844) (-463 "GCNAALG.spad" 753866 753893 759737 759804) (-462 "GCDDOM.spad" 753042 753050 753792 753861) (-461 "GCDDOM.spad" 752280 752290 753032 753037) (-460 "GB.spad" 749806 749844 752236 752241) (-459 "GBINTERN.spad" 745826 745864 749796 749801) (-458 "GBF.spad" 741593 741631 745816 745821) (-457 "GBEUCLID.spad" 739475 739513 741583 741588) (-456 "GAUSSFAC.spad" 738788 738796 739465 739470) (-455 "GALUTIL.spad" 737114 737124 738744 738749) (-454 "GALPOLYU.spad" 735568 735581 737104 737109) (-453 "GALFACTU.spad" 733741 733760 735558 735563) (-452 "GALFACT.spad" 723930 723941 733731 733736) (-451 "FVFUN.spad" 720953 720961 723920 723925) (-450 "FVC.spad" 720005 720013 720943 720948) (-449 "FUNDESC.spad" 719683 719691 719995 720000) (-448 "FUNCTION.spad" 719532 719544 719673 719678) (-447 "FT.spad" 717829 717837 719522 719527) (-446 "FTEM.spad" 716994 717002 717819 717824) (-445 "FSUPFACT.spad" 715894 715913 716930 716935) (-444 "FST.spad" 713980 713988 715884 715889) (-443 "FSRED.spad" 713460 713476 713970 713975) (-442 "FSPRMELT.spad" 712342 712358 713417 713422) (-441 "FSPECF.spad" 710433 710449 712332 712337) (-440 "FS.spad" 704701 704711 710208 710428) (-439 "FS.spad" 698747 698759 704256 704261) (-438 "FSINT.spad" 698407 698423 698737 698742) (-437 "FSERIES.spad" 697598 697610 698227 698326) (-436 "FSCINT.spad" 696915 696931 697588 697593) (-435 "FSAGG.spad" 696032 696042 696871 696910) (-434 "FSAGG.spad" 695111 695123 695952 695957) (-433 "FSAGG2.spad" 693854 693870 695101 695106) (-432 "FS2UPS.spad" 688345 688379 693844 693849) (-431 "FS2.spad" 687992 688008 688335 688340) (-430 "FS2EXPXP.spad" 687117 687140 687982 687987) (-429 "FRUTIL.spad" 686071 686081 687107 687112) (-428 "FR.spad" 679546 679556 684854 684923) (-427 "FRNAALG.spad" 674815 674825 679488 679541) (-426 "FRNAALG.spad" 670096 670108 674771 674776) (-425 "FRNAAF2.spad" 669552 669570 670086 670091) (-424 "FRMOD.spad" 668962 668992 669483 669488) (-423 "FRIDEAL.spad" 668187 668208 668942 668957) (-422 "FRIDEAL2.spad" 667791 667823 668177 668182) (-421 "FRETRCT.spad" 667302 667312 667781 667786) (-420 "FRETRCT.spad" 666679 666691 667160 667165) (-419 "FRAMALG.spad" 665027 665040 666635 666674) (-418 "FRAMALG.spad" 663407 663422 665017 665022) (-417 "FRAC.spad" 660506 660516 660909 661082) (-416 "FRAC2.spad" 660111 660123 660496 660501) (-415 "FR2.spad" 659447 659459 660101 660106) (-414 "FPS.spad" 656262 656270 659337 659442) (-413 "FPS.spad" 653105 653115 656182 656187) (-412 "FPC.spad" 652151 652159 653007 653100) (-411 "FPC.spad" 651283 651293 652141 652146) (-410 "FPATMAB.spad" 651045 651055 651273 651278) (-409 "FPARFRAC.spad" 649532 649549 651035 651040) (-408 "FORTRAN.spad" 648038 648081 649522 649527) (-407 "FORT.spad" 646987 646995 648028 648033) (-406 "FORTFN.spad" 644157 644165 646977 646982) (-405 "FORTCAT.spad" 643841 643849 644147 644152) (-404 "FORMULA.spad" 641315 641323 643831 643836) (-403 "FORMULA1.spad" 640794 640804 641305 641310) (-402 "FORDER.spad" 640485 640509 640784 640789) (-401 "FOP.spad" 639686 639694 640475 640480) (-400 "FNLA.spad" 639110 639132 639654 639681) (-399 "FNCAT.spad" 637705 637713 639100 639105) (-398 "FNAME.spad" 637597 637605 637695 637700) (-397 "FMTC.spad" 637395 637403 637523 637592) (-396 "FMONOID.spad" 637060 637070 637351 637356) (-395 "FMONCAT.spad" 634213 634223 637050 637055) (-394 "FM.spad" 633908 633920 634147 634174) (-393 "FMFUN.spad" 630938 630946 633898 633903) (-392 "FMC.spad" 629990 629998 630928 630933) (-391 "FMCAT.spad" 627658 627676 629958 629985) (-390 "FM1.spad" 627015 627027 627592 627619) (-389 "FLOATRP.spad" 624750 624764 627005 627010) (-388 "FLOAT.spad" 618064 618072 624616 624745) (-387 "FLOATCP.spad" 615495 615509 618054 618059) (-386 "FLINEXP.spad" 615217 615227 615485 615490) (-385 "FLINEXP.spad" 614883 614895 615153 615158) (-384 "FLASORT.spad" 614209 614221 614873 614878) (-383 "FLALG.spad" 611855 611874 614135 614204) (-382 "FLAGG.spad" 608897 608907 611835 611850) (-381 "FLAGG.spad" 605840 605852 608780 608785) (-380 "FLAGG2.spad" 604565 604581 605830 605835) (-379 "FINRALG.spad" 602626 602639 604521 604560) (-378 "FINRALG.spad" 600613 600628 602510 602515) (-377 "FINITE.spad" 599765 599773 600603 600608) (-376 "FINAALG.spad" 588886 588896 599707 599760) (-375 "FINAALG.spad" 578019 578031 588842 588847) (-374 "FILE.spad" 577602 577612 578009 578014) (-373 "FILECAT.spad" 576128 576145 577592 577597) (-372 "FIELD.spad" 575534 575542 576030 576123) (-371 "FIELD.spad" 575026 575036 575524 575529) (-370 "FGROUP.spad" 573673 573683 575006 575021) (-369 "FGLMICPK.spad" 572460 572475 573663 573668) (-368 "FFX.spad" 571835 571850 572176 572269) (-367 "FFSLPE.spad" 571338 571359 571825 571830) (-366 "FFPOLY.spad" 562600 562611 571328 571333) (-365 "FFPOLY2.spad" 561660 561677 562590 562595) (-364 "FFP.spad" 561057 561077 561376 561469) (-363 "FF.spad" 560505 560521 560738 560831) (-362 "FFNBX.spad" 559017 559037 560221 560314) (-361 "FFNBP.spad" 557530 557547 558733 558826) (-360 "FFNB.spad" 555995 556016 557211 557304) (-359 "FFINTBAS.spad" 553509 553528 555985 555990) (-358 "FFIELDC.spad" 551086 551094 553411 553504) (-357 "FFIELDC.spad" 548749 548759 551076 551081) (-356 "FFHOM.spad" 547497 547514 548739 548744) (-355 "FFF.spad" 544932 544943 547487 547492) (-354 "FFCGX.spad" 543779 543799 544648 544741) (-353 "FFCGP.spad" 542668 542688 543495 543588) (-352 "FFCG.spad" 541460 541481 542349 542442) (-351 "FFCAT.spad" 534633 534655 541299 541455) (-350 "FFCAT.spad" 527885 527909 534553 534558) (-349 "FFCAT2.spad" 527632 527672 527875 527880) (-348 "FEXPR.spad" 519349 519395 527388 527427) (-347 "FEVALAB.spad" 519057 519067 519339 519344) (-346 "FEVALAB.spad" 518550 518562 518834 518839) (-345 "FDIV.spad" 517992 518016 518540 518545) (-344 "FDIVCAT.spad" 516056 516080 517982 517987) (-343 "FDIVCAT.spad" 514118 514144 516046 516051) (-342 "FDIV2.spad" 513774 513814 514108 514113) (-341 "FCTRDATA.spad" 512782 512790 513764 513769) (-340 "FCPAK1.spad" 511349 511357 512772 512777) (-339 "FCOMP.spad" 510728 510738 511339 511344) (-338 "FC.spad" 500735 500743 510718 510723) (-337 "FAXF.spad" 493706 493720 500637 500730) (-336 "FAXF.spad" 486729 486745 493662 493667) (-335 "FARRAY.spad" 484879 484889 485912 485939) (-334 "FAMR.spad" 483015 483027 484777 484874) (-333 "FAMR.spad" 481135 481149 482899 482904) (-332 "FAMONOID.spad" 480803 480813 481089 481094) (-331 "FAMONC.spad" 479099 479111 480793 480798) (-330 "FAGROUP.spad" 478723 478733 478995 479022) (-329 "FACUTIL.spad" 476927 476944 478713 478718) (-328 "FACTFUNC.spad" 476121 476131 476917 476922) (-327 "EXPUPXS.spad" 472954 472977 474253 474402) (-326 "EXPRTUBE.spad" 470242 470250 472944 472949) (-325 "EXPRODE.spad" 467402 467418 470232 470237) (-324 "EXPR.spad" 462577 462587 463291 463586) (-323 "EXPR2UPS.spad" 458699 458712 462567 462572) (-322 "EXPR2.spad" 458404 458416 458689 458694) (-321 "EXPEXPAN.spad" 455344 455369 455976 456069) (-320 "EXIT.spad" 455015 455023 455334 455339) (-319 "EXITAST.spad" 454751 454759 455005 455010) (-318 "EVALCYC.spad" 454211 454225 454741 454746) (-317 "EVALAB.spad" 453783 453793 454201 454206) (-316 "EVALAB.spad" 453353 453365 453773 453778) (-315 "EUCDOM.spad" 450927 450935 453279 453348) (-314 "EUCDOM.spad" 448563 448573 450917 450922) (-313 "ESTOOLS.spad" 440409 440417 448553 448558) (-312 "ESTOOLS2.spad" 440012 440026 440399 440404) (-311 "ESTOOLS1.spad" 439697 439708 440002 440007) (-310 "ES.spad" 432512 432520 439687 439692) (-309 "ES.spad" 425233 425243 432410 432415) (-308 "ESCONT.spad" 422026 422034 425223 425228) (-307 "ESCONT1.spad" 421775 421787 422016 422021) (-306 "ES2.spad" 421280 421296 421765 421770) (-305 "ES1.spad" 420850 420866 421270 421275) (-304 "ERROR.spad" 418177 418185 420840 420845) (-303 "EQTBL.spad" 416649 416671 416858 416885) (-302 "EQ.spad" 411454 411464 414241 414353) (-301 "EQ2.spad" 411172 411184 411444 411449) (-300 "EP.spad" 407498 407508 411162 411167) (-299 "ENV.spad" 406176 406184 407488 407493) (-298 "ENTIRER.spad" 405844 405852 406120 406171) (-297 "EMR.spad" 405132 405173 405770 405839) (-296 "ELTAGG.spad" 403386 403405 405122 405127) (-295 "ELTAGG.spad" 401604 401625 403342 403347) (-294 "ELTAB.spad" 401079 401092 401594 401599) (-293 "ELFUTS.spad" 400466 400485 401069 401074) (-292 "ELEMFUN.spad" 400155 400163 400456 400461) (-291 "ELEMFUN.spad" 399842 399852 400145 400150) (-290 "ELAGG.spad" 397813 397823 399822 399837) (-289 "ELAGG.spad" 395721 395733 397732 397737) (-288 "ELABOR.spad" 395067 395075 395711 395716) (-287 "ELABEXPR.spad" 393999 394007 395057 395062) (-286 "EFUPXS.spad" 390775 390805 393955 393960) (-285 "EFULS.spad" 387611 387634 390731 390736) (-284 "EFSTRUC.spad" 385626 385642 387601 387606) (-283 "EF.spad" 380402 380418 385616 385621) (-282 "EAB.spad" 378678 378686 380392 380397) (-281 "E04UCFA.spad" 378214 378222 378668 378673) (-280 "E04NAFA.spad" 377791 377799 378204 378209) (-279 "E04MBFA.spad" 377371 377379 377781 377786) (-278 "E04JAFA.spad" 376907 376915 377361 377366) (-277 "E04GCFA.spad" 376443 376451 376897 376902) (-276 "E04FDFA.spad" 375979 375987 376433 376438) (-275 "E04DGFA.spad" 375515 375523 375969 375974) (-274 "E04AGNT.spad" 371365 371373 375505 375510) (-273 "DVARCAT.spad" 368255 368265 371355 371360) (-272 "DVARCAT.spad" 365143 365155 368245 368250) (-271 "DSMP.spad" 362610 362624 362915 363042) (-270 "DROPT.spad" 356569 356577 362600 362605) (-269 "DROPT1.spad" 356234 356244 356559 356564) (-268 "DROPT0.spad" 351091 351099 356224 356229) (-267 "DRAWPT.spad" 349264 349272 351081 351086) (-266 "DRAW.spad" 342140 342153 349254 349259) (-265 "DRAWHACK.spad" 341448 341458 342130 342135) (-264 "DRAWCX.spad" 338918 338926 341438 341443) (-263 "DRAWCURV.spad" 338465 338480 338908 338913) (-262 "DRAWCFUN.spad" 327997 328005 338455 338460) (-261 "DQAGG.spad" 326175 326185 327965 327992) (-260 "DPOLCAT.spad" 321524 321540 326043 326170) (-259 "DPOLCAT.spad" 316959 316977 321480 321485) (-258 "DPMO.spad" 309753 309769 309891 310136) (-257 "DPMM.spad" 302560 302578 302685 302930) (-256 "DOMTMPLT.spad" 302331 302339 302550 302555) (-255 "DOMCTOR.spad" 302086 302094 302321 302326) (-254 "DOMAIN.spad" 301173 301181 302076 302081) (-253 "DMP.spad" 298433 298448 299003 299130) (-252 "DLP.spad" 297785 297795 298423 298428) (-251 "DLIST.spad" 296364 296374 296968 296995) (-250 "DLAGG.spad" 294781 294791 296354 296359) (-249 "DIVRING.spad" 294323 294331 294725 294776) (-248 "DIVRING.spad" 293909 293919 294313 294318) (-247 "DISPLAY.spad" 292099 292107 293899 293904) (-246 "DIRPROD.spad" 281914 281930 282554 282685) (-245 "DIRPROD2.spad" 280732 280750 281904 281909) (-244 "DIRPCAT.spad" 279893 279909 280596 280727) (-243 "DIRPCAT.spad" 278783 278801 279488 279493) (-242 "DIOSP.spad" 277608 277616 278773 278778) (-241 "DIOPS.spad" 276604 276614 277588 277603) (-240 "DIOPS.spad" 275574 275586 276560 276565) (-239 "DIFRING.spad" 275412 275420 275554 275569) (-238 "DIFFSPC.spad" 274991 274999 275402 275407) (-237 "DIFFSPC.spad" 274568 274578 274981 274986) (-236 "DIFFMOD.spad" 274057 274067 274536 274563) (-235 "DIFFDOM.spad" 273222 273233 274047 274052) (-234 "DIFFDOM.spad" 272385 272398 273212 273217) (-233 "DIFEXT.spad" 271556 271566 272365 272380) (-232 "DIFEXT.spad" 270644 270656 271455 271460) (-231 "DIAGG.spad" 270274 270284 270624 270639) (-230 "DIAGG.spad" 269912 269924 270264 270269) (-229 "DHMATRIX.spad" 268224 268234 269369 269396) (-228 "DFSFUN.spad" 261864 261872 268214 268219) (-227 "DFLOAT.spad" 258595 258603 261754 261859) (-226 "DFINTTLS.spad" 256826 256842 258585 258590) (-225 "DERHAM.spad" 254740 254772 256806 256821) (-224 "DEQUEUE.spad" 254064 254074 254347 254374) (-223 "DEGRED.spad" 253681 253695 254054 254059) (-222 "DEFINTRF.spad" 251218 251228 253671 253676) (-221 "DEFINTEF.spad" 249728 249744 251208 251213) (-220 "DEFAST.spad" 249096 249104 249718 249723) (-219 "DECIMAL.spad" 247202 247210 247563 247656) (-218 "DDFACT.spad" 245015 245032 247192 247197) (-217 "DBLRESP.spad" 244615 244639 245005 245010) (-216 "DBASE.spad" 243279 243289 244605 244610) (-215 "DATAARY.spad" 242741 242754 243269 243274) (-214 "D03FAFA.spad" 242569 242577 242731 242736) (-213 "D03EEFA.spad" 242389 242397 242559 242564) (-212 "D03AGNT.spad" 241475 241483 242379 242384) (-211 "D02EJFA.spad" 240937 240945 241465 241470) (-210 "D02CJFA.spad" 240415 240423 240927 240932) (-209 "D02BHFA.spad" 239905 239913 240405 240410) (-208 "D02BBFA.spad" 239395 239403 239895 239900) (-207 "D02AGNT.spad" 234209 234217 239385 239390) (-206 "D01WGTS.spad" 232528 232536 234199 234204) (-205 "D01TRNS.spad" 232505 232513 232518 232523) (-204 "D01GBFA.spad" 232027 232035 232495 232500) (-203 "D01FCFA.spad" 231549 231557 232017 232022) (-202 "D01ASFA.spad" 231017 231025 231539 231544) (-201 "D01AQFA.spad" 230463 230471 231007 231012) (-200 "D01APFA.spad" 229887 229895 230453 230458) (-199 "D01ANFA.spad" 229381 229389 229877 229882) (-198 "D01AMFA.spad" 228891 228899 229371 229376) (-197 "D01ALFA.spad" 228431 228439 228881 228886) (-196 "D01AKFA.spad" 227957 227965 228421 228426) (-195 "D01AJFA.spad" 227480 227488 227947 227952) (-194 "D01AGNT.spad" 223547 223555 227470 227475) (-193 "CYCLOTOM.spad" 223053 223061 223537 223542) (-192 "CYCLES.spad" 219845 219853 223043 223048) (-191 "CVMP.spad" 219262 219272 219835 219840) (-190 "CTRIGMNP.spad" 217762 217778 219252 219257) (-189 "CTOR.spad" 217453 217461 217752 217757) (-188 "CTORKIND.spad" 217056 217064 217443 217448) (-187 "CTORCAT.spad" 216305 216313 217046 217051) (-186 "CTORCAT.spad" 215552 215562 216295 216300) (-185 "CTORCALL.spad" 215141 215151 215542 215547) (-184 "CSTTOOLS.spad" 214386 214399 215131 215136) (-183 "CRFP.spad" 208110 208123 214376 214381) (-182 "CRCEAST.spad" 207830 207838 208100 208105) (-181 "CRAPACK.spad" 206881 206891 207820 207825) (-180 "CPMATCH.spad" 206385 206400 206806 206811) (-179 "CPIMA.spad" 206090 206109 206375 206380) (-178 "COORDSYS.spad" 201099 201109 206080 206085) (-177 "CONTOUR.spad" 200510 200518 201089 201094) (-176 "CONTFRAC.spad" 196260 196270 200412 200505) (-175 "CONDUIT.spad" 196018 196026 196250 196255) (-174 "COMRING.spad" 195692 195700 195956 196013) (-173 "COMPPROP.spad" 195210 195218 195682 195687) (-172 "COMPLPAT.spad" 194977 194992 195200 195205) (-171 "COMPLEX.spad" 189114 189124 189358 189619) (-170 "COMPLEX2.spad" 188829 188841 189104 189109) (-169 "COMPILER.spad" 188378 188386 188819 188824) (-168 "COMPFACT.spad" 187980 187994 188368 188373) (-167 "COMPCAT.spad" 186052 186062 187714 187975) (-166 "COMPCAT.spad" 183852 183864 185516 185521) (-165 "COMMUPC.spad" 183600 183618 183842 183847) (-164 "COMMONOP.spad" 183133 183141 183590 183595) (-163 "COMM.spad" 182944 182952 183123 183128) (-162 "COMMAAST.spad" 182707 182715 182934 182939) (-161 "COMBOPC.spad" 181622 181630 182697 182702) (-160 "COMBINAT.spad" 180389 180399 181612 181617) (-159 "COMBF.spad" 177771 177787 180379 180384) (-158 "COLOR.spad" 176608 176616 177761 177766) (-157 "COLONAST.spad" 176274 176282 176598 176603) (-156 "CMPLXRT.spad" 175985 176002 176264 176269) (-155 "CLLCTAST.spad" 175647 175655 175975 175980) (-154 "CLIP.spad" 171755 171763 175637 175642) (-153 "CLIF.spad" 170410 170426 171711 171750) (-152 "CLAGG.spad" 166915 166925 170400 170405) (-151 "CLAGG.spad" 163291 163303 166778 166783) (-150 "CINTSLPE.spad" 162622 162635 163281 163286) (-149 "CHVAR.spad" 160760 160782 162612 162617) (-148 "CHARZ.spad" 160675 160683 160740 160755) (-147 "CHARPOL.spad" 160185 160195 160665 160670) (-146 "CHARNZ.spad" 159938 159946 160165 160180) (-145 "CHAR.spad" 157812 157820 159928 159933) (-144 "CFCAT.spad" 157140 157148 157802 157807) (-143 "CDEN.spad" 156336 156350 157130 157135) (-142 "CCLASS.spad" 154485 154493 155747 155786) (-141 "CATEGORY.spad" 153527 153535 154475 154480) (-140 "CATCTOR.spad" 153418 153426 153517 153522) (-139 "CATAST.spad" 153036 153044 153408 153413) (-138 "CASEAST.spad" 152750 152758 153026 153031) (-137 "CARTEN.spad" 148117 148141 152740 152745) (-136 "CARTEN2.spad" 147507 147534 148107 148112) (-135 "CARD.spad" 144802 144810 147481 147502) (-134 "CAPSLAST.spad" 144576 144584 144792 144797) (-133 "CACHSET.spad" 144200 144208 144566 144571) (-132 "CABMON.spad" 143755 143763 144190 144195) (-131 "BYTEORD.spad" 143430 143438 143745 143750) (-130 "BYTE.spad" 142857 142865 143420 143425) (-129 "BYTEBUF.spad" 140716 140724 142026 142053) (-128 "BTREE.spad" 139789 139799 140323 140350) (-127 "BTOURN.spad" 138794 138804 139396 139423) (-126 "BTCAT.spad" 138186 138196 138762 138789) (-125 "BTCAT.spad" 137598 137610 138176 138181) (-124 "BTAGG.spad" 137064 137072 137566 137593) (-123 "BTAGG.spad" 136550 136560 137054 137059) (-122 "BSTREE.spad" 135291 135301 136157 136184) (-121 "BRILL.spad" 133488 133499 135281 135286) (-120 "BRAGG.spad" 132428 132438 133478 133483) (-119 "BRAGG.spad" 131332 131344 132384 132389) (-118 "BPADICRT.spad" 129313 129325 129568 129661) (-117 "BPADIC.spad" 128977 128989 129239 129308) (-116 "BOUNDZRO.spad" 128633 128650 128967 128972) (-115 "BOP.spad" 123815 123823 128623 128628) (-114 "BOP1.spad" 121281 121291 123805 123810) (-113 "BOOLE.spad" 120931 120939 121271 121276) (-112 "BOOLEAN.spad" 120369 120377 120921 120926) (-111 "BMODULE.spad" 120081 120093 120337 120364) (-110 "BITS.spad" 119502 119510 119717 119744) (-109 "BINDING.spad" 118915 118923 119492 119497) (-108 "BINARY.spad" 117026 117034 117382 117475) (-107 "BGAGG.spad" 116231 116241 117006 117021) (-106 "BGAGG.spad" 115444 115456 116221 116226) (-105 "BFUNCT.spad" 115008 115016 115424 115439) (-104 "BEZOUT.spad" 114148 114175 114958 114963) (-103 "BBTREE.spad" 110993 111003 113755 113782) (-102 "BASTYPE.spad" 110665 110673 110983 110988) (-101 "BASTYPE.spad" 110335 110345 110655 110660) (-100 "BALFACT.spad" 109794 109807 110325 110330) (-99 "AUTOMOR.spad" 109245 109254 109774 109789) (-98 "ATTREG.spad" 105968 105975 108997 109240) (-97 "ATTRBUT.spad" 101991 101998 105948 105963) (-96 "ATTRAST.spad" 101708 101715 101981 101986) (-95 "ATRIG.spad" 101178 101185 101698 101703) (-94 "ATRIG.spad" 100646 100655 101168 101173) (-93 "ASTCAT.spad" 100550 100557 100636 100641) (-92 "ASTCAT.spad" 100452 100461 100540 100545) (-91 "ASTACK.spad" 99791 99800 100059 100086) (-90 "ASSOCEQ.spad" 98617 98628 99747 99752) (-89 "ASP9.spad" 97698 97711 98607 98612) (-88 "ASP8.spad" 96741 96754 97688 97693) (-87 "ASP80.spad" 96063 96076 96731 96736) (-86 "ASP7.spad" 95223 95236 96053 96058) (-85 "ASP78.spad" 94674 94687 95213 95218) (-84 "ASP77.spad" 94043 94056 94664 94669) (-83 "ASP74.spad" 93135 93148 94033 94038) (-82 "ASP73.spad" 92406 92419 93125 93130) (-81 "ASP6.spad" 91273 91286 92396 92401) (-80 "ASP55.spad" 89782 89795 91263 91268) (-79 "ASP50.spad" 87599 87612 89772 89777) (-78 "ASP4.spad" 86894 86907 87589 87594) (-77 "ASP49.spad" 85893 85906 86884 86889) (-76 "ASP42.spad" 84300 84339 85883 85888) (-75 "ASP41.spad" 82879 82918 84290 84295) (-74 "ASP35.spad" 81867 81880 82869 82874) (-73 "ASP34.spad" 81168 81181 81857 81862) (-72 "ASP33.spad" 80728 80741 81158 81163) (-71 "ASP31.spad" 79868 79881 80718 80723) (-70 "ASP30.spad" 78760 78773 79858 79863) (-69 "ASP29.spad" 78226 78239 78750 78755) (-68 "ASP28.spad" 69499 69512 78216 78221) (-67 "ASP27.spad" 68396 68409 69489 69494) (-66 "ASP24.spad" 67483 67496 68386 68391) (-65 "ASP20.spad" 66947 66960 67473 67478) (-64 "ASP1.spad" 66328 66341 66937 66942) (-63 "ASP19.spad" 61014 61027 66318 66323) (-62 "ASP12.spad" 60428 60441 61004 61009) (-61 "ASP10.spad" 59699 59712 60418 60423) (-60 "ARRAY2.spad" 59059 59068 59306 59333) (-59 "ARRAY1.spad" 57896 57905 58242 58269) (-58 "ARRAY12.spad" 56609 56620 57886 57891) (-57 "ARR2CAT.spad" 52383 52404 56577 56604) (-56 "ARR2CAT.spad" 48177 48200 52373 52378) (-55 "ARITY.spad" 47549 47556 48167 48172) (-54 "APPRULE.spad" 46809 46831 47539 47544) (-53 "APPLYORE.spad" 46428 46441 46799 46804) (-52 "ANY.spad" 45287 45294 46418 46423) (-51 "ANY1.spad" 44358 44367 45277 45282) (-50 "ANTISYM.spad" 42803 42819 44338 44353) (-49 "ANON.spad" 42496 42503 42793 42798) (-48 "AN.spad" 40805 40812 42312 42405) (-47 "AMR.spad" 38990 39001 40703 40800) (-46 "AMR.spad" 37012 37025 38727 38732) (-45 "ALIST.spad" 34424 34445 34774 34801) (-44 "ALGSC.spad" 33559 33585 34296 34349) (-43 "ALGPKG.spad" 29342 29353 33515 33520) (-42 "ALGMFACT.spad" 28535 28549 29332 29337) (-41 "ALGMANIP.spad" 26009 26024 28368 28373) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file