diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/rk4draw.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/rk4draw.input.pamphlet')
-rw-r--r-- | src/input/rk4draw.input.pamphlet | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/src/input/rk4draw.input.pamphlet b/src/input/rk4draw.input.pamphlet new file mode 100644 index 00000000..209ebb90 --- /dev/null +++ b/src/input/rk4draw.input.pamphlet @@ -0,0 +1,85 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input rk4draw.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1994. +@ +<<*>>= +<<license>> +-- Two scripts which can be combined to show how accurate the Runge-Kutta +-- method is for simple problems. + +-- The first script finds the exact solution for y'= cos(y)/(2+x) given +-- the initial value condition. This is then plotted. + +)clear all +y := operator y +deq := D(y x,x) = cos(y x)/(2+x) +solve(deq,y,x=3,[0]) +eval (%,y(x)=z) +solve(%,z) +%.1 +rhs % +draw(%,x=3..4) + +-- The second script uses rk4 to solve the same equation form x=3..4 +-- Each point is merged into a list which is then plotted. +-- The two graphs can then be superimposed using the pick and drop facilities. + +)clear all +y:Vector Float :=[0.0] +x1:=3.0 +p0 := point[x1::SF,(y.1)::SF]$(Point SF) +n:=1 +h:=0.1 +der(d:Vector Float,y:Vector Float,x:Float):Void == setelt(d,1,cos(y.1)/(2+x)) +rk4(y,n,x1,h,der) +y +x1:=x1+h +p1 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p2 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p3 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p4 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p5 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p6 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p7 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p8 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p9 := point[x1::SF,(y.1)::SF]$(Point SF) +rk4(y,n,x1,h,der);x1:=x1+h;y +p10 := point[x1::SF,(y.1)::SF]$(Point SF) +llp := [[p0,p1],[p1,p2],[p2,p3],[p3,p4],[p4,p5],_ + [p5,p6],[p6,p7],[p7,p8],[p8,p9],[p9,p10]] +pc2 := dim green() +lpc := [pc2, pc2, pc2, pc2, pc2, pc2, pc2, pc2, pc2, pc2] +lc := [pastel blue(), light yellow(), dim green(),_ + bright red(), light green(),dim yellow(), _ + bright blue(),dark red(), pastel red(), light blue()] +size1 := 4::PositiveInteger +lsize := [size1, size1, size1, size1, size1, size1, size1, size1, size1, size1] +g:= makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE +makeViewport2D(g,[title("RK4")])$VIEW2D + + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |