diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/lodo.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/lodo.input.pamphlet')
-rw-r--r-- | src/input/lodo.input.pamphlet | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/src/input/lodo.input.pamphlet b/src/input/lodo.input.pamphlet new file mode 100644 index 00000000..e19d23dc --- /dev/null +++ b/src/input/lodo.input.pamphlet @@ -0,0 +1,137 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input lodo.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1991. +@ +<<*>>= +<<license>> +---------------------------------- lodo.input ----------------------------- + +-- LODO2(M,A) is the domain of linear ordinary differential operators over +-- an A-module M, where A is a differential ring. This includes the +-- cases of operators which are polynomials in D acting upon scalars or +-- vectors depending on a single variable. The coefficients of the +-- operator polynomials can be integers, rational functions, matrices +-- or elements of other domains. + +------------------------------------------------------------------------ +-- Differential operators with constant coefficients +------------------------------------------------------------------------ +)clear all +RN:=FRAC INT +Dx: LODO2(RN, UP(x,RN)) + +Dx := D() -- definition of an operator +a := Dx + 1 +b := a + 1/2*Dx**2 - 1/2 + +p: UP(x,RN) := 4*x**2 + 2/3 -- something to work on + +a p -- application of an operator to a polynomial +(a*b) p = a b p -- multiplication is defined by this identity +c := (1/9)*b*(a + b)**2 -- exponentiation follows from multiplication +(a**2 - 3/4*b + c) (p + 1) -- general application of operator expressions + +------------------------------------------------------------------------ +-- Differential operators with rational function coefficients +------------------------------------------------------------------------ +)clear all +RFZ := FRAC UP(x,INT) +(Dx, a, b): LODO1 RFZ + +Dx := D() +b := 3*x**2*Dx**2 + 2*Dx + 1/x +a := b*(5*x*Dx + 7) +p: RFZ := x**2 + 1/x**2 + +(a*b - b*a) p -- operator multiplication is not commutative + +-- When the coefficients of the operator polynomials come from a field +-- it is possible to define left and right division of the operators. +-- This allows the computation of left and right gcd's via remainder +-- sequences, and also the computation of left and right lcm's. + +leftDivide(a,b) -- result is the quotient/remainder pair +a - (b * %.quotient + %.remainder) +rightDivide(a,b) +a - (%.quotient * b + %.remainder) + +-- A GCD doesn't necessarily divide a and b on both sides. +e := leftGcd(a,b) +leftRemainder(a, e) -- remainder from left division +rightRemainder(a, e) -- remainder from right division + +-- An LCM is not necessarily divisible from both sides. +f := rightLcm(a,b) +leftRemainder(f, b) +rightRemainder(f, b) -- the remainder is non-zero + +------------------------------------------------------------------------ +-- +-- Problem: find the first few coefficients of exp(x)/x**i in +-- Dop phi +-- where +-- Dop := D**3 + G/x**2 * D + H/x**3 - 1 +-- phi := sum(s[i]*exp(x)/x**i, i = 0..) +------------------------------------------------------------------------ +)clear all +Dx: LODO(EXPR INT, f +-> D(f, x)) +Dx := D() +Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1 +n == 3 +phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n]) +phi1 == Dop(phi) / exp x +phi2 == phi1 *x**(n+3) +phi3 == retract(phi2)@(POLY INT) +pans == phi3 ::UP(x,POLY INT) +pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1] +leq == solve(pans1,[subscript(s,[i]) for i in 1..n]) +leq +n==4 +leq +n==7 +leq + +------------------------------------------------------------------------ +-- Differential operators with matrix coefficients acting on vectors. +------------------------------------------------------------------------ +)clear all +PZ := UP(x,INT); Vect := DPMM(3, PZ, SQMATRIX(3,PZ), PZ); +Modo := LODO2(SQMATRIX(3,PZ), Vect); + +p := directProduct([3*x**2 + 1, 2*x, 7*x**3 + 2*x]::(VECTOR(PZ)))@Vect +m := [[x**2, 1, 0], [1, x**4, 0], [0, 0, 4*x**2]]::(SQMATRIX(3,PZ)) + +-- Vect is a left SM(3,PZ)-module +q: Vect := m * p + +-- Operator combination and application +Dx: Modo := D() +a: Modo := 1*Dx + m +b: Modo := m*Dx + 1 + +a*b +a p +b p +(a+b) (p + q) + + + + + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |