diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/images3a.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/images3a.input.pamphlet')
-rw-r--r-- | src/input/images3a.input.pamphlet | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/src/input/images3a.input.pamphlet b/src/input/images3a.input.pamphlet new file mode 100644 index 00000000..ff6d6741 --- /dev/null +++ b/src/input/images3a.input.pamphlet @@ -0,0 +1,57 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input images3a.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1994-1996. +@ +<<*>>= +<<license>> + +-- Create a (p,q) torus-knot with radius r around the curve. +-- The formula was derived by Larry Lambe. + +-- To produce a trefoil knot: +-- torusKnot(2, 3, 0.5, 10, 200) + +-- compile, don't interpret functions +)set function compile on + +-- read in the numeric generalized tube program +)read ntube + +-- Create a (p,q) torus-knot with radius r around the curve. +-- The formula was derived by Larry Lambe. +-- To produce a trefoil knot: +-- torusKnot(2, 3, 0.5) +torusKnot(p:DFLOAT, q:DFLOAT, r:DFLOAT, uSteps:PI, tSteps:PI):VIEW3D == + -- equation for the torus knot + knot := (t:DFLOAT):Point DFLOAT +-> + fac := 4/(2.2@DFLOAT-sin(q*t)) + fac * point [cos(p*t), sin(p*t), cos(q*t)] + -- equation for the cross section of the tube + circle := (u:DFLOAT, t:DFLOAT):Point DFLOAT +-> + r * point [cos u, sin u] + -- draw the tube around the knot + ntubeDrawOpt(knot, circle, 0..2*%pi, 0..2*%pi, var1Steps == uSteps, + var2Steps == tSteps) + + + +-- draw a seris of unfolding torus knots + +for i in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250) +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |