diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/ffx72.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/ffx72.input.pamphlet')
-rw-r--r-- | src/input/ffx72.input.pamphlet | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/src/input/ffx72.input.pamphlet b/src/input/ffx72.input.pamphlet new file mode 100644 index 00000000..4a7de8db --- /dev/null +++ b/src/input/ffx72.input.pamphlet @@ -0,0 +1,70 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input ffx72.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1994. +@ +<<*>>= +<<license>> + +-- This file demonstrates some calculations with the finite field of +-- 49 elements. It is built as a degree 2 extension of the Galois +-- field with 7 elements. +)cl all +)time off + +gf72 := FF(7, 2) +-- x**2+1 is irreducible over PF 7 + +u: UP(x,PF 7) := x**2 + 1 +factor u + +-- but factors over FF(PF 7, 2) + +u2 : UP(x,gf72) := u +factor u2 + +-- the following is the irreducible polynomial used in the representation +-- of GF(7**2) over PF 7. It will be the same every time this field is +-- used. + +definingPolynomial()$gf72 + +-- e is a randomly chosen element + +e := index(size()$gf72 quo 3)$gf72 +norm e +trace e + +-- the order of an element is the minimum positive integer to which +-- it can be raised to yield 1. + +order e + +-- we can display all the nonzero elements in the field + +allElts := [index(i :: PI)$gf72 for i in 1..48] + +-- we can sum over them + +reduce(+,allElts) + +-- and we can determine the order of each of them. Each element of +-- order 48 generates the multiplicative group of non-zero elements. + +[order e for e in allElts] +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |