aboutsummaryrefslogtreecommitdiff
path: root/src/input/cdraw.input.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/input/cdraw.input.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/input/cdraw.input.pamphlet')
-rw-r--r--src/input/cdraw.input.pamphlet164
1 files changed, 164 insertions, 0 deletions
diff --git a/src/input/cdraw.input.pamphlet b/src/input/cdraw.input.pamphlet
new file mode 100644
index 00000000..8d07d8a0
--- /dev/null
+++ b/src/input/cdraw.input.pamphlet
@@ -0,0 +1,164 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input cdraw.input}
+\author{The Axiom Team}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1994.
+@
+<<*>>=
+<<license>>
+
+-- complex surface and vector field drawing by SCM
+-- complex surface vector field drawing
+
+C := Complex DoubleFloat
+S := Segment DoubleFloat
+PC := Record(rr:DoubleFloat, th:DoubleFloat)
+
+realSteps: PI := 25 -- the number of steps in the real direction
+imagSteps: PI := 25 -- the number of steps in the imaginary direction
+clipValue: DoubleFloat := 10 -- the maximum length of a vector to draw
+
+
+-- Draw a complex function as a height field
+-- uses the complex norm as the height and the complex argument as the color
+-- optionally it will draw arrows on the surface indicating the direction
+-- of the complex argument
+
+-- sample call:
+-- f: C -> C
+-- f z == exp(1/z)
+-- drawComplex(f, 0.3..3, 0..2*%pi, false)
+
+-- parameter descriptions:
+-- f: the function to draw
+-- rRange: the range of the real values
+-- imagRange: the range of imaginary values
+drawComplex(f: C -> C, realRange: S, imagRange: S): VIEW3D ==
+ free realSteps, imagSteps
+ delReal := (hi(realRange) - lo(realRange))/realSteps
+ delImag := (hi(imagRange) - lo(imagRange))/imagSteps
+ funTable: ARRAY2(PC) := new(realSteps+1, imagSteps+1, [0,0]$PC)
+ real := lo(realRange)
+ for i in 1..realSteps+1 repeat
+ imag := lo(imagRange)
+ for j in 1..imagSteps+1 repeat
+ z := f complex(real, imag)
+ funTable(i,j) := [clipFun(sqrt norm z), argument(z)]$PC
+ imag := imag + delImag
+ real := real + delReal
+ llp:List List Point DoubleFloat := []
+ real := lo(realRange)
+ for i in 1..realSteps+1 repeat
+ imag := lo(imagRange)
+ lp:List Point DoubleFloat := []
+ for j in 1..imagSteps+1 repeat
+ lp := cons(point [real,imag, funTable(i,j).rr,
+ funTable(i,j).th] ,lp)
+ imag := imag + delImag
+ real := real + delReal
+ llp := cons(reverse! lp, llp)
+ llp := reverse! llp
+ space := mesh(llp)$ThreeSpace(DoubleFloat)
+ makeViewport3D(space, "Complex Function")$VIEW3D
+
+-- draw a complex vector field
+-- these vector fields should be viewed from the top by pressing the
+-- "XY" translate button on the VIEW3D control panel
+
+-- parameters:
+-- f: the mapping from C to C which we will draw
+-- realRange: the range of the reals
+-- tRange: the range of the imaginaries
+
+-- sample call:
+-- f z == sin z
+-- drawComplexVectorField(f, -2..2, -2..2)
+-- call the functions 'setRealSteps' and 'setImagSteps' to change the
+-- number of arrows drawn in each direction.
+
+drawComplexVectorField(f: C -> C, realRange: S, imagRange: S): VIEW3D ==
+ -- compute the steps size of the grid
+ delReal := (hi(realRange) - lo(realRange))/realSteps
+ delImag := (hi(imagRange) - lo(imagRange))/imagSteps
+ -- create the space to hold the arrows
+ space := create3Space()$ThreeSpace DoubleFloat
+ real := lo(realRange)
+ for i in 1..realSteps+1 repeat
+ imag := lo(imagRange)
+ for j in 1..imagSteps+1 repeat
+ -- compute the function
+ z := f complex(real, imag)
+ -- get the direction of the arrow
+ arg := argument z
+ -- get the length of the arrow
+ len := clipFun(sqrt norm z)
+ -- create point at the base of the arrow
+ p1 := point [real, imag, 0.0@DoubleFloat, arg]
+ -- scale the arrow length so it isn't too long
+ scaleLen := delReal * len
+ -- create the point at the top of the arrow
+ p2 := point [p1.1 + scaleLen*cos(arg), p1.2 + scaleLen*sin(arg),
+ 0.0@DoubleFloat, arg]
+ -- make the pointer at the top of the arrow
+ arrow := makeArrow(p1, p2, scaleLen, arg)
+ -- add the line segments in the arrow to the space
+ for a in arrow repeat curve(space, a)$ThreeSpace DoubleFloat
+ imag := imag + delImag
+ real := real + delReal
+ -- draw the vector feild
+ makeViewport3D(space, "Complex Vector Field")$VIEW3D
+
+-- relative size of the arrow head compared to the length of the arrow
+arrowScale := 0.25@DoubleFloat
+
+-- angle of the arrow head
+arrowAngle := %pi-%pi/10.0@DoubleFloat
+
+-- Add an arrow head to a line segment, which starts at 'p1', ends at 'p2',
+-- has length 'len', and and angle 'arg'. We pass 'len' and 'arg' as
+-- arguments since thet were already computed by the calling program
+makeArrow(p1, p2, len, arg) ==
+ c1 := cos(arg + arrowAngle)
+ s1 := sin(arg + arrowAngle)
+ c2 := cos(arg - arrowAngle)
+ s2 := sin(arg - arrowAngle)
+ p3 := point [p2.1 + c1*arrowScale*len, p2.2 + s1*arrowScale*len,
+ p2.3, p2.4]
+ p4 := point [p2.1 + c2*arrowScale*len, p2.2 + s2*arrowScale*len,
+ p2.3, p2.4]
+ [[p1, p2, p3], [p2, p4]]
+
+-- set the number of steps to use in the real direction
+setRealSteps(n) ==
+ free realSteps
+ realSteps := n
+
+-- set the number of steps to use in the imaginary direction
+setImagSteps(n) ==
+ free imagSteps
+ imagSteps := n
+
+-- set the maximum length of a vector
+setClipValue clip ==
+ free clipValue
+ clipValue := clip
+
+-- clip a value in the interval (-clip...clip)
+clipFun(x:DoubleFloat):DoubleFloat ==
+ min(max(x, -clipValue), clipValue)
+
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}