diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/calculus2.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/calculus2.input.pamphlet')
-rw-r--r-- | src/input/calculus2.input.pamphlet | 359 |
1 files changed, 359 insertions, 0 deletions
diff --git a/src/input/calculus2.input.pamphlet b/src/input/calculus2.input.pamphlet new file mode 100644 index 00000000..f90b9303 --- /dev/null +++ b/src/input/calculus2.input.pamphlet @@ -0,0 +1,359 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input calculus2.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{bugs} +\subsection{bug1} +exp: series expansion involves transcendental constants +<<bug1>>= +exp(2 + tan(y)) +@ +<<bugs>>= + +-- Input for page FormalDerivativePage +)clear all + +differentiate(f, x) +f := operator f +x := operator x +y := operator y +a := f(x z, y z, z**2) + x y(z+1) +dadz := differentiate(a, z) +eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1)) +eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1)) +differentiate(%, z) + +-- Input for page SeriesArithmeticPage +)clear all + +x := series x +num := 3 + x +den := 1 + 7 * x +num / den +base := 1 / (1 - x) +expon := x * base +base ** expon + +-- Input for page SeriesConversionPage +)clear all + +f := sin(a*x) +series(f,x = 0) +g := y / (exp(y) - 1) +series(g) +h := sin(3*x) +series(h,x,x = %pi/12) +series(sqrt(tan(a*x)),x = 0) +series(sec(x) ** 2,x = %pi/2) +bern := t * exp(t*x) / (exp(t) - 1) +series(bern,t = 0) + +-- Input for page SeriesDifferentialEquationPage +)clear all + +)set streams calculate 7 +y := operator 'y +eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = cos(x) +seriesSolve(eq, y, x = 0, [1, 0, 0]) +x := operator 'x +eq1 := differentiate(x(t), t) = 1 + x(t)**2 +eq2 := differentiate(y(t), t) = x(t) * y(t) +seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0]) + +-- Input for page LaplacePage +)clear all + +sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t) +laplace(%, t, s) +laplace((exp(a*t) - exp(b*t))/t, t, s) +laplace(2/t * (1 - cos(a*t)), t, s) +laplace(exp(-a*t) * sin(b*t) / b**2, t, s) +laplace((cos(a*t) - cos(b*t))/t, t, s) +laplace(exp(a*t+b)*ei(c*t), t, s) +laplace(a*ci(b*t) + c*si(d*t), t, s) +laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s) + +-- Input for page SeriesCoefficientPage +)clear all + +x := series(x) +y := exp(x) * sin(x) +coefficient(y,6) +coefficient(y,15) +y + +-- Input for page SymbolicIntegrationPage +)clear all + +f := (x**2+2*x+1) / (x**6+6*x**5+15*x**4+20*x**3+15*x**2+6*x+2) +integrate(f, x) +g := log(1 + sqrt(a * x + b)) / x +integrate(g, x) +integrate(1/(x**2 - 2),x) +integrate(1/(x**2 + 2),x) +h := x**2 / (x**4 - a**2) +integrate(h, x) +complexIntegrate(h, x) +expandLog % +rootSimp % +ratForm % + +-- Input for page DerivativePage +)clear all + +f := exp exp x +differentiate(f, x) +differentiate(f, x, 4) +g := sin(x**2 + y) +differentiate(g, y) +differentiate(g, [y, y, x, x]) + +-- Input for page SeriesFormulaPage +)clear all + +taylor(n +-> 1/factorial(n),x = 0) +taylor(n +-> (-1)**(n-1)/n,x = 1,1..) +taylor(n +-> (-1)**(n-1)/n,x = 1,1..7) +laurent(n +-> (-1)**(n-1)/(n + 2),x = 1,-1..) +puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) +puiseux(j +-> j**2,x = 8,-4/3..,1/2) +series(n +-> 1/factorial(n),x = 0) +series(n +-> (-1)**(n - 1)/(n + 2),x = 1,-1..) +series(i +-> (-1)**((i - 1)/2)/factorial(i),x = 0,1..,2) + +-- Input for page SeriesCreationPage +)clear all + +x := series x +1/(1 - x - x**2) +sin(x) +sin(1 + x) +sin(a * x) +series(1/log(y),y = 1) +f : UTS(FLOAT,z,0) := exp(z) +series(1/factorial(n),n,w = 0) + +-- Input for page SeriesFunctionPage +)clear all + +x := series x +rat := x**2 / (1 - 6*x + x**2) +sin(rat) +y : UTS(FRAC INT,y,0) := y +exp(y) +tan(y**2) +cos(y + y**5) +log(1 + sin(y)) +<<bug1>> +z : UTS(EXPR INT,z,0) := z +exp(2 + tan(z)) +w := taylor w +exp(2 + tan(w)) + +-- Input for page LimitPage +)clear all + +f := sin(a*x) / tan(b*x) +limit(f,x=0) +g := csc(a*x) / csch(b*x) +limit(g,x=0) +h := (1 + k/x)**x +limit(h,x=%plusInfinity) + +-- Input for page SeriesBernoulliPage +)clear all + +reduce(+,[m**4 for m in 1..10]) +sum4 := sum(m**4, m = 1..k) +eval(sum4, k = 10) +f := t*exp(x*t) / (exp(t) - 1) +)set streams calculate 5 +ff := taylor(f,t = 0) +factorial(6) * coefficient(ff,6) +g := eval(f, x = x + 1) - f +normalize(g) +taylor(g,t = 0) +B5 := factorial(5) * coefficient(ff,5) +1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) +sum4 +@ +<<*>>= + +-- Input for page FormalDerivativePage +)clear all + +differentiate(f, x) +f := operator f +x := operator x +y := operator y +a := f(x z, y z, z**2) + x y(z+1) +dadz := differentiate(a, z) +eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1)) +eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1)) +differentiate(%, z) + +-- Input for page SeriesArithmeticPage +)clear all + +x := series x +num := 3 + x +den := 1 + 7 * x +num / den +base := 1 / (1 - x) +expon := x * base +base ** expon + +-- Input for page SeriesConversionPage +)clear all + +f := sin(a*x) +series(f,x = 0) +g := y / (exp(y) - 1) +series(g) +h := sin(3*x) +series(h,x,x = %pi/12) +series(sqrt(tan(a*x)),x = 0) +series(sec(x) ** 2,x = %pi/2) +bern := t * exp(t*x) / (exp(t) - 1) +series(bern,t = 0) + +-- Input for page SeriesDifferentialEquationPage +)clear all + +)set streams calculate 7 +y := operator 'y +eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = cos(x) +seriesSolve(eq, y, x = 0, [1, 0, 0]) +x := operator 'x +eq1 := differentiate(x(t), t) = 1 + x(t)**2 +eq2 := differentiate(y(t), t) = x(t) * y(t) +seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0]) + +-- Input for page LaplacePage +)clear all + +sin(a*t) * cosh(a*t) - cos(a*t) * sinh(a*t) +laplace(%, t, s) +laplace((exp(a*t) - exp(b*t))/t, t, s) +laplace(2/t * (1 - cos(a*t)), t, s) +laplace(exp(-a*t) * sin(b*t) / b**2, t, s) +laplace((cos(a*t) - cos(b*t))/t, t, s) +laplace(exp(a*t+b)*ei(c*t), t, s) +laplace(a*ci(b*t) + c*si(d*t), t, s) +laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s) + +-- Input for page SeriesCoefficientPage +)clear all + +x := series(x) +y := exp(x) * sin(x) +coefficient(y,6) +coefficient(y,15) +y + +-- Input for page SymbolicIntegrationPage +)clear all + +f := (x**2+2*x+1) / (x**6+6*x**5+15*x**4+20*x**3+15*x**2+6*x+2) +integrate(f, x) +g := log(1 + sqrt(a * x + b)) / x +integrate(g, x) +integrate(1/(x**2 - 2),x) +integrate(1/(x**2 + 2),x) +h := x**2 / (x**4 - a**2) +integrate(h, x) +complexIntegrate(h, x) +expandLog % +rootSimp % +ratForm % + +-- Input for page DerivativePage +)clear all + +f := exp exp x +differentiate(f, x) +differentiate(f, x, 4) +g := sin(x**2 + y) +differentiate(g, y) +differentiate(g, [y, y, x, x]) + +-- Input for page SeriesFormulaPage +)clear all + +taylor(n +-> 1/factorial(n),x = 0) +taylor(n +-> (-1)**(n-1)/n,x = 1,1..) +taylor(n +-> (-1)**(n-1)/n,x = 1,1..7) +laurent(n +-> (-1)**(n-1)/(n + 2),x = 1,-1..) +puiseux(i +-> (-1)**((i-1)/2)/factorial(i),x = 0,1..,2) +puiseux(j +-> j**2,x = 8,-4/3..,1/2) +series(n +-> 1/factorial(n),x = 0) +series(n +-> (-1)**(n - 1)/(n + 2),x = 1,-1..) +series(i +-> (-1)**((i - 1)/2)/factorial(i),x = 0,1..,2) + +-- Input for page SeriesCreationPage +)clear all + +x := series x +1/(1 - x - x**2) +sin(x) +sin(1 + x) +sin(a * x) +series(1/log(y),y = 1) +f : UTS(FLOAT,z,0) := exp(z) +series(1/factorial(n),n,w = 0) + +-- Input for page SeriesFunctionPage +)clear all + +x := series x +rat := x**2 / (1 - 6*x + x**2) +sin(rat) +y : UTS(FRAC INT,y,0) := y +exp(y) +tan(y**2) +cos(y + y**5) +log(1 + sin(y)) +z : UTS(EXPR INT,z,0) := z +exp(2 + tan(z)) +w := taylor w +exp(2 + tan(w)) + +-- Input for page LimitPage +)clear all + +f := sin(a*x) / tan(b*x) +limit(f,x=0) +g := csc(a*x) / csch(b*x) +limit(g,x=0) +h := (1 + k/x)**x +limit(h,x=%plusInfinity) + +-- Input for page SeriesBernoulliPage +)clear all + +reduce(+,[m**4 for m in 1..10]) +sum4 := sum(m**4, m = 1..k) +eval(sum4, k = 10) +f := t*exp(x*t) / (exp(t) - 1) +)set streams calculate 5 +ff := taylor(f,t = 0) +factorial(6) * coefficient(ff,6) +g := eval(f, x = x + 1) - f +normalize(g) +taylor(g,t = 0) +B5 := factorial(5) * coefficient(ff,5) +1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) +sum4 +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |