diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/allfact.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/allfact.input.pamphlet')
-rw-r--r-- | src/input/allfact.input.pamphlet | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/src/input/allfact.input.pamphlet b/src/input/allfact.input.pamphlet new file mode 100644 index 00000000..1bfa8fe8 --- /dev/null +++ b/src/input/allfact.input.pamphlet @@ -0,0 +1,68 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input allfact.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1991. +@ +<<*>>= +<<license>> + +)cl all + +-- Examples of all the factor functions in the system. + +-- factorization of integer numbers +n:=45234258258293 +factor n + +-- factorization of gaussian integers +m:(Complex Integer) := 1324567+%i*53523582 +factor m + +-- factorization of polynomials over finite fields +u:UP(x,PF(19)) :=3*x**4+2*x**2+15*x+18 +factor u + +-- factorization of polynomials over the integers +v:UP(x,INT):= (4*x**3+2*x**2+1)*(12*x**5-x**3+12) +factor v + +-- factorization of multivariate polynomial over the integers +w:MPOLY([x,y,z],INT) :=(x**2-y**2-z**2)*(x**2+y**2+z**2)*(z*y+3*z) +factor w + +-- factorization of univariate and multivariate over the rational numbers +f:MPOLY([x,y,z],FRAC INT) :=(4/9*x**2-1/16)*(x**3/27+125) +factor f + +-- factorization over rational functions +g:DMP([x,y],FRAC POLY INT):=a**2*x**2/b**2 -c**2*y**2/d**2 +factor g + +-- decomposition of a rational function +r:FRAC POLY INT:= (a**3/b**3-c**3/(b+1)**3)*(a*d+a/c) +factorFraction r + +-- factorization over simple algebraic extensions +aa|aa**2+aa+1 +p:UP(x,SAEaa) :=(x**3+aa**2*x+1)*(aa*x**2+aa*x+aa)**2 +factor(p)$SAEFACT(UP('aa,FRAC INT),SAEaa,UP(x,SAEaa)) + +-- factorization over algebraic numbers +a:=rootOf(a**2+3)$AN +factor(x**2+x+1,[a]) +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |