aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/sups.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/sups.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/sups.spad.pamphlet')
-rw-r--r--src/algebra/sups.spad.pamphlet1114
1 files changed, 1114 insertions, 0 deletions
diff --git a/src/algebra/sups.spad.pamphlet b/src/algebra/sups.spad.pamphlet
new file mode 100644
index 00000000..289a0f64
--- /dev/null
+++ b/src/algebra/sups.spad.pamphlet
@@ -0,0 +1,1114 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra sups.spad}
+\author{Clifton J. Williamson}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{domain ISUPS InnerSparseUnivariatePowerSeries}
+<<domain ISUPS InnerSparseUnivariatePowerSeries>>=
+)abbrev domain ISUPS InnerSparseUnivariatePowerSeries
+++ Author: Clifton J. Williamson
+++ Date Created: 28 October 1994
+++ Date Last Updated: 9 March 1995
+++ Basic Operations:
+++ Related Domains: SparseUnivariateTaylorSeries, SparseUnivariateLaurentSeries
+++ SparseUnivariatePuiseuxSeries
+++ Also See:
+++ AMS Classifications:
+++ Keywords: sparse, series
+++ Examples:
+++ References:
+++ Description: InnerSparseUnivariatePowerSeries is an internal domain
+++ used for creating sparse Taylor and Laurent series.
+InnerSparseUnivariatePowerSeries(Coef): Exports == Implementation where
+ Coef : Ring
+ B ==> Boolean
+ COM ==> OrderedCompletion Integer
+ I ==> Integer
+ L ==> List
+ NNI ==> NonNegativeInteger
+ OUT ==> OutputForm
+ PI ==> PositiveInteger
+ REF ==> Reference OrderedCompletion Integer
+ RN ==> Fraction Integer
+ Term ==> Record(k:Integer,c:Coef)
+ SG ==> String
+ ST ==> Stream Term
+
+ Exports ==> UnivariatePowerSeriesCategory(Coef,Integer) with
+ makeSeries: (REF,ST) -> %
+ ++ makeSeries(refer,str) creates a power series from the reference
+ ++ \spad{refer} and the stream \spad{str}.
+ getRef: % -> REF
+ ++ getRef(f) returns a reference containing the order to which the
+ ++ terms of f have been computed.
+ getStream: % -> ST
+ ++ getStream(f) returns the stream of terms representing the series f.
+ series: ST -> %
+ ++ series(st) creates a series from a stream of non-zero terms,
+ ++ where a term is an exponent-coefficient pair. The terms in the
+ ++ stream should be ordered by increasing order of exponents.
+ monomial?: % -> B
+ ++ monomial?(f) tests if f is a single monomial.
+ multiplyCoefficients: (I -> Coef,%) -> %
+ ++ multiplyCoefficients(fn,f) returns the series
+ ++ \spad{sum(fn(n) * an * x^n,n = n0..)},
+ ++ where f is the series \spad{sum(an * x^n,n = n0..)}.
+ iExquo: (%,%,B) -> Union(%,"failed")
+ ++ iExquo(f,g,taylor?) is the quotient of the power series f and g.
+ ++ If \spad{taylor?} is \spad{true}, then we must have
+ ++ \spad{order(f) >= order(g)}.
+ taylorQuoByVar: % -> %
+ ++ taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)
+ ++ returns \spad{a1 + a2 x + a3 x**2 + ...}
+ iCompose: (%,%) -> %
+ ++ iCompose(f,g) returns \spad{f(g(x))}. This is an internal function
+ ++ which should only be called for Taylor series \spad{f(x)} and
+ ++ \spad{g(x)} such that the constant coefficient of \spad{g(x)} is zero.
+ seriesToOutputForm: (ST,REF,Symbol,Coef,RN) -> OutputForm
+ ++ seriesToOutputForm(st,refer,var,cen,r) prints the series
+ ++ \spad{f((var - cen)^r)}.
+ if Coef has Algebra Fraction Integer then
+ integrate: % -> %
+ ++ integrate(f(x)) returns an anti-derivative of the power series
+ ++ \spad{f(x)} with constant coefficient 0.
+ ++ Warning: function does not check for a term of degree -1.
+ cPower: (%,Coef) -> %
+ ++ cPower(f,r) computes \spad{f^r}, where f has constant coefficient 1.
+ ++ For use when the coefficient ring is commutative.
+ cRationalPower: (%,RN) -> %
+ ++ cRationalPower(f,r) computes \spad{f^r}.
+ ++ For use when the coefficient ring is commutative.
+ cExp: % -> %
+ ++ cExp(f) computes the exponential of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cLog: % -> %
+ ++ cLog(f) computes the logarithm of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cSin: % -> %
+ ++ cSin(f) computes the sine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCos: % -> %
+ ++ cCos(f) computes the cosine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cTan: % -> %
+ ++ cTan(f) computes the tangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCot: % -> %
+ ++ cCot(f) computes the cotangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cSec: % -> %
+ ++ cSec(f) computes the secant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCsc: % -> %
+ ++ cCsc(f) computes the cosecant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAsin: % -> %
+ ++ cAsin(f) computes the arcsine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAcos: % -> %
+ ++ cAcos(f) computes the arccosine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAtan: % -> %
+ ++ cAtan(f) computes the arctangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAcot: % -> %
+ ++ cAcot(f) computes the arccotangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAsec: % -> %
+ ++ cAsec(f) computes the arcsecant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAcsc: % -> %
+ ++ cAcsc(f) computes the arccosecant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cSinh: % -> %
+ ++ cSinh(f) computes the hyperbolic sine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCosh: % -> %
+ ++ cCosh(f) computes the hyperbolic cosine of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cTanh: % -> %
+ ++ cTanh(f) computes the hyperbolic tangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCoth: % -> %
+ ++ cCoth(f) computes the hyperbolic cotangent of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cSech: % -> %
+ ++ cSech(f) computes the hyperbolic secant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cCsch: % -> %
+ ++ cCsch(f) computes the hyperbolic cosecant of the power series f.
+ ++ For use when the coefficient ring is commutative.
+ cAsinh: % -> %
+ ++ cAsinh(f) computes the inverse hyperbolic sine of the power
+ ++ series f. For use when the coefficient ring is commutative.
+ cAcosh: % -> %
+ ++ cAcosh(f) computes the inverse hyperbolic cosine of the power
+ ++ series f. For use when the coefficient ring is commutative.
+ cAtanh: % -> %
+ ++ cAtanh(f) computes the inverse hyperbolic tangent of the power
+ ++ series f. For use when the coefficient ring is commutative.
+ cAcoth: % -> %
+ ++ cAcoth(f) computes the inverse hyperbolic cotangent of the power
+ ++ series f. For use when the coefficient ring is commutative.
+ cAsech: % -> %
+ ++ cAsech(f) computes the inverse hyperbolic secant of the power
+ ++ series f. For use when the coefficient ring is commutative.
+ cAcsch: % -> %
+ ++ cAcsch(f) computes the inverse hyperbolic cosecant of the power
+ ++ series f. For use when the coefficient ring is commutative.
+
+ Implementation ==> add
+ import REF
+
+ Rep := Record(%ord: REF,%str: Stream Term)
+ -- when the value of 'ord' is n, this indicates that all non-zero
+ -- terms of order up to and including n have been computed;
+ -- when 'ord' is plusInfinity, all terms have been computed;
+ -- lazy evaluation of 'str' has the side-effect of modifying the value
+ -- of 'ord'
+
+--% Local functions
+
+ makeTerm: (Integer,Coef) -> Term
+ getCoef: Term -> Coef
+ getExpon: Term -> Integer
+ iSeries: (ST,REF) -> ST
+ iExtend: (ST,COM,REF) -> ST
+ iTruncate0: (ST,REF,REF,COM,I,I) -> ST
+ iTruncate: (%,COM,I) -> %
+ iCoefficient: (ST,Integer) -> Coef
+ iOrder: (ST,COM,REF) -> I
+ iMap1: ((Coef,I) -> Coef,I -> I,B,ST,REF,REF,Integer) -> ST
+ iMap2: ((Coef,I) -> Coef,I -> I,B,%) -> %
+ iPlus1: ((Coef,Coef) -> Coef,ST,REF,ST,REF,REF,I) -> ST
+ iPlus2: ((Coef,Coef) -> Coef,%,%) -> %
+ productByTerm: (Coef,I,ST,REF,REF,I) -> ST
+ productLazyEval: (ST,REF,ST,REF,COM) -> Void
+ iTimes: (ST,REF,ST,REF,REF,I) -> ST
+ iDivide: (ST,REF,ST,REF,Coef,I,REF,I) -> ST
+ divide: (%,I,%,I,Coef) -> %
+ compose0: (ST,REF,ST,REF,I,%,%,I,REF,I) -> ST
+ factorials?: () -> Boolean
+ termOutput: (RN,Coef,OUT) -> OUT
+ showAll?: () -> Boolean
+
+--% macros
+
+ makeTerm(exp,coef) == [exp,coef]
+ getCoef term == term.c
+ getExpon term == term.k
+
+ makeSeries(refer,x) == [refer,x]
+ getRef ups == ups.%ord
+ getStream ups == ups.%str
+
+--% creation and destruction of series
+
+ monomial(coef,expon) ==
+ nix : ST := empty()
+ st :=
+ zero? coef => nix
+ concat(makeTerm(expon,coef),nix)
+ makeSeries(ref plusInfinity(),st)
+
+ monomial? ups == (not empty? getStream ups) and (empty? rst getStream ups)
+
+ coerce(n:I) == n :: Coef :: %
+ coerce(r:Coef) == monomial(r,0)
+
+ iSeries(x,refer) ==
+ empty? x => (setelt(refer,plusInfinity()); empty())
+ setelt(refer,(getExpon frst x) :: COM)
+ concat(frst x,iSeries(rst x,refer))
+
+ series(x:ST) ==
+ empty? x => 0
+ n := getExpon frst x; refer := ref(n :: COM)
+ makeSeries(refer,iSeries(x,refer))
+
+--% values
+
+ characteristic() == characteristic()$Coef
+
+ 0 == monomial(0,0)
+ 1 == monomial(1,0)
+
+ iExtend(st,n,refer) ==
+ (elt refer) < n =>
+ explicitlyEmpty? st => (setelt(refer,plusInfinity()); st)
+ explicitEntries? st => iExtend(rst st,n,refer)
+ iExtend(lazyEvaluate st,n,refer)
+ st
+
+ extend(x,n) == (iExtend(getStream x,n :: COM,getRef x); x)
+ complete x == (iExtend(getStream x,plusInfinity(),getRef x); x)
+
+ iTruncate0(x,xRefer,refer,minExp,maxExp,n) == delay
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ nn := n :: COM
+ while (elt xRefer) < nn repeat lazyEvaluate x
+ explicitEntries? x =>
+ (nx := getExpon(xTerm := frst x)) > maxExp =>
+ (setelt(refer,plusInfinity()); empty())
+ setelt(refer,nx :: COM)
+ (nx :: COM) >= minExp =>
+ concat(makeTerm(nx,getCoef xTerm),_
+ iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1))
+ iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1)
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ setelt(refer,degr :: COM)
+ iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1)
+
+ iTruncate(ups,minExp,maxExp) ==
+ x := getStream ups; xRefer := getRef ups
+ explicitlyEmpty? x => 0
+ explicitEntries? x =>
+ deg := getExpon frst x
+ refer := ref((deg - 1) :: COM)
+ makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,deg))
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ refer := ref(degr :: COM)
+ makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1))
+
+ truncate(ups,n) == iTruncate(ups,minusInfinity(),n)
+ truncate(ups,n1,n2) ==
+ if n1 > n2 then (n1,n2) := (n2,n1)
+ iTruncate(ups,n1 :: COM,n2)
+
+ iCoefficient(st,n) ==
+ explicitEntries? st =>
+ term := frst st
+ (expon := getExpon term) > n => 0
+ expon = n => getCoef term
+ iCoefficient(rst st,n)
+ 0
+
+ coefficient(x,n) == (extend(x,n); iCoefficient(getStream x,n))
+ elt(x:%,n:Integer) == coefficient(x,n)
+
+ iOrder(st,n,refer) ==
+ explicitlyEmpty? st => error "order: series has infinite order"
+ explicitEntries? st =>
+ ((r := getExpon frst st) :: COM) >= n => retract(n)@Integer
+ r
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt refer)@I
+ (degr :: COM) >= n => retract(n)@Integer
+ iOrder(lazyEvaluate st,n,refer)
+
+ order x == iOrder(getStream x,plusInfinity(),getRef x)
+ order(x,n) == iOrder(getStream x,n :: COM,getRef x)
+
+ terms x == getStream x
+
+--% predicates
+
+ zero? ups ==
+ x := getStream ups; ref := getRef ups
+ whatInfinity(n := elt ref) = 1 => explicitlyEmpty? x
+ count : NNI := _$streamCount$Lisp
+ for i in 1..count repeat
+ explicitlyEmpty? x => return true
+ explicitEntries? x => return false
+ lazyEvaluate x
+ false
+
+ ups1 = ups2 == zero?(ups1 - ups2)
+
+--% arithmetic
+
+ iMap1(cFcn,eFcn,check?,x,xRefer,refer,n) == delay
+ -- when this function is called, all terms in 'x' of order < n have been
+ -- computed and we compute the eFcn(n)th order coefficient of the result
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ -- if terms in 'x' up to order n have not been computed,
+ -- apply lazy evaluation
+ nn := n :: COM
+ while (elt xRefer) < nn repeat lazyEvaluate x
+ -- 'x' may now be empty: retest
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ -- must have nx >= n
+ explicitEntries? x =>
+ xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
+ newCoef := cFcn(xCoef,nx); m := eFcn nx
+ setelt(refer,m :: COM)
+ not check? =>
+ concat(makeTerm(m,newCoef),_
+ iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
+ zero? newCoef => iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1)
+ concat(makeTerm(m,newCoef),_
+ iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ setelt(refer,eFcn(degr) :: COM)
+ iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1)
+
+ iMap2(cFcn,eFcn,check?,ups) ==
+ -- 'eFcn' must be a strictly increasing function,
+ -- i.e. i < j => eFcn(i) < eFcn(j)
+ xRefer := getRef ups; x := getStream ups
+ explicitlyEmpty? x => 0
+ explicitEntries? x =>
+ deg := getExpon frst x
+ refer := ref(eFcn(deg - 1) :: COM)
+ makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,deg))
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ refer := ref(eFcn(degr) :: COM)
+ makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1))
+
+ map(fcn,x) == iMap2(fcn(#1),#1,true,x)
+ differentiate x == iMap2(#2 * #1,#1 - 1,true,x)
+ multiplyCoefficients(f,x) == iMap2(f(#2) * #1,#1,true,x)
+ multiplyExponents(x,n) == iMap2(#1,n * #1,false,x)
+
+ iPlus1(op,x,xRefer,y,yRefer,refer,n) == delay
+ -- when this function is called, all terms in 'x' and 'y' of order < n
+ -- have been computed and we are computing the nth order coefficient of
+ -- the result; note the 'op' is either '+' or '-'
+ explicitlyEmpty? x => iMap1(op(0,#1),#1,false,y,yRefer,refer,n)
+ explicitlyEmpty? y => iMap1(op(#1,0),#1,false,x,xRefer,refer,n)
+ -- if terms up to order n have not been computed,
+ -- apply lazy evaluation
+ nn := n :: COM
+ while (elt xRefer) < nn repeat lazyEvaluate x
+ while (elt yRefer) < nn repeat lazyEvaluate y
+ -- 'x' or 'y' may now be empty: retest
+ explicitlyEmpty? x => iMap1(op(0,#1),#1,false,y,yRefer,refer,n)
+ explicitlyEmpty? y => iMap1(op(#1,0),#1,false,x,xRefer,refer,n)
+ -- must have nx >= n, ny >= n
+ -- both x and y have explicit terms
+ explicitEntries?(x) and explicitEntries?(y) =>
+ xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
+ yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
+ nx = ny =>
+ setelt(refer,nx :: COM)
+ zero? (coef := op(xCoef,yCoef)) =>
+ iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1)
+ concat(makeTerm(nx,coef),_
+ iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1))
+ nx < ny =>
+ setelt(refer,nx :: COM)
+ concat(makeTerm(nx,op(xCoef,0)),_
+ iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
+ setelt(refer,ny :: COM)
+ concat(makeTerm(ny,op(0,yCoef)),_
+ iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
+ -- y has no term of degree n
+ explicitEntries? x =>
+ xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
+ -- can't have elt(yRefer) = infty unless all terms have been computed
+ (degr := retract(elt yRefer)@I) < nx =>
+ setelt(refer,elt yRefer)
+ iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
+ setelt(refer,nx :: COM)
+ concat(makeTerm(nx,op(xCoef,0)),_
+ iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
+ -- x has no term of degree n
+ explicitEntries? y =>
+ yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ (degr := retract(elt xRefer)@I) < ny =>
+ setelt(refer,elt xRefer)
+ iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
+ setelt(refer,ny :: COM)
+ concat(makeTerm(ny,op(0,yCoef)),_
+ iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
+ -- neither x nor y has a term of degree n
+ setelt(refer,xyRef := min(elt xRefer,elt yRefer))
+ -- can't have xyRef = infty unless all terms have been computed
+ iPlus1(op,x,xRefer,y,yRefer,refer,retract(xyRef)@I + 1)
+
+ iPlus2(op,ups1,ups2) ==
+ xRefer := getRef ups1; x := getStream ups1
+ xDeg :=
+ explicitlyEmpty? x => return map(op(0$Coef,#1),ups2)
+ explicitEntries? x => (getExpon frst x) - 1
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ retract(elt xRefer)@I
+ yRefer := getRef ups2; y := getStream ups2
+ yDeg :=
+ explicitlyEmpty? y => return map(op(#1,0$Coef),ups1)
+ explicitEntries? y => (getExpon frst y) - 1
+ -- can't have elt(yRefer) = infty unless all terms have been computed
+ retract(elt yRefer)@I
+ deg := min(xDeg,yDeg); refer := ref(deg :: COM)
+ makeSeries(refer,iPlus1(op,x,xRefer,y,yRefer,refer,deg + 1))
+
+ x + y == iPlus2(#1 + #2,x,y)
+ x - y == iPlus2(#1 - #2,x,y)
+ - y == iMap2(_-#1,#1,false,y)
+
+ -- gives correct defaults for I, NNI and PI
+ n:I * x:% == (zero? n => 0; map(n * #1,x))
+ n:NNI * x:% == (zero? n => 0; map(n * #1,x))
+ n:PI * x:% == (zero? n => 0; map(n * #1,x))
+
+ productByTerm(coef,expon,x,xRefer,refer,n) ==
+ iMap1(coef * #1,#1 + expon,true,x,xRefer,refer,n)
+
+ productLazyEval(x,xRefer,y,yRefer,nn) ==
+ explicitlyEmpty?(x) or explicitlyEmpty?(y) => void()
+ explicitEntries? x =>
+ explicitEntries? y => void()
+ xDeg := (getExpon frst x) :: COM
+ while (xDeg + elt(yRefer)) < nn repeat lazyEvaluate y
+ void()
+ explicitEntries? y =>
+ yDeg := (getExpon frst y) :: COM
+ while (yDeg + elt(xRefer)) < nn repeat lazyEvaluate x
+ void()
+ lazyEvaluate x
+ -- if x = y, then y may now have explicit entries
+ if lazy? y then lazyEvaluate y
+ productLazyEval(x,xRefer,y,yRefer,nn)
+
+ iTimes(x,xRefer,y,yRefer,refer,n) == delay
+ -- when this function is called, we are computing the nth order
+ -- coefficient of the product
+ productLazyEval(x,xRefer,y,yRefer,n :: COM)
+ explicitlyEmpty?(x) or explicitlyEmpty?(y) =>
+ (setelt(refer,plusInfinity()); empty())
+ -- must have nx + ny >= n
+ explicitEntries?(x) and explicitEntries?(y) =>
+ xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
+ yCoef := getCoef(yTerm := frst y); yExpon := getExpon yTerm
+ expon := xExpon + yExpon
+ setelt(refer,expon :: COM)
+ scRefer := ref(expon :: COM)
+ scMult := productByTerm(xCoef,xExpon,rst y,yRefer,scRefer,yExpon + 1)
+ prRefer := ref(expon :: COM)
+ pr := iTimes(rst x,xRefer,y,yRefer,prRefer,expon + 1)
+ sm := iPlus1(#1 + #2,scMult,scRefer,pr,prRefer,refer,expon + 1)
+ zero?(coef := xCoef * yCoef) => sm
+ concat(makeTerm(expon,coef),sm)
+ explicitEntries? x =>
+ xExpon := getExpon frst x
+ -- can't have elt(yRefer) = infty unless all terms have been computed
+ degr := retract(elt yRefer)@I
+ setelt(refer,(xExpon + degr) :: COM)
+ iTimes(x,xRefer,y,yRefer,refer,xExpon + degr + 1)
+ explicitEntries? y =>
+ yExpon := getExpon frst y
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ setelt(refer,(yExpon + degr) :: COM)
+ iTimes(x,xRefer,y,yRefer,refer,yExpon + degr + 1)
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ xDegr := retract(elt xRefer)@I
+ yDegr := retract(elt yRefer)@I
+ setelt(refer,(xDegr + yDegr) :: COM)
+ iTimes(x,xRefer,y,yRefer,refer,xDegr + yDegr + 1)
+
+ ups1:% * ups2:% ==
+ xRefer := getRef ups1; x := getStream ups1
+ xDeg :=
+ explicitlyEmpty? x => return 0
+ explicitEntries? x => (getExpon frst x) - 1
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ retract(elt xRefer)@I
+ yRefer := getRef ups2; y := getStream ups2
+ yDeg :=
+ explicitlyEmpty? y => return 0
+ explicitEntries? y => (getExpon frst y) - 1
+ -- can't have elt(yRefer) = infty unless all terms have been computed
+ retract(elt yRefer)@I
+ deg := xDeg + yDeg + 1; refer := ref(deg :: COM)
+ makeSeries(refer,iTimes(x,xRefer,y,yRefer,refer,deg + 1))
+
+ iDivide(x,xRefer,y,yRefer,rym,m,refer,n) == delay
+ -- when this function is called, we are computing the nth order
+ -- coefficient of the result
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ -- if terms up to order n - m have not been computed,
+ -- apply lazy evaluation
+ nm := (n + m) :: COM
+ while (elt xRefer) < nm repeat lazyEvaluate x
+ -- 'x' may now be empty: retest
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ -- must have nx >= n + m
+ explicitEntries? x =>
+ newCoef := getCoef(xTerm := frst x) * rym; nx := getExpon xTerm
+ prodRefer := ref(nx :: COM)
+ prod := productByTerm(-newCoef,nx - m,rst y,yRefer,prodRefer,1)
+ sumRefer := ref(nx :: COM)
+ sum := iPlus1(#1 + #2,rst x,xRefer,prod,prodRefer,sumRefer,nx + 1)
+ setelt(refer,(nx - m) :: COM); term := makeTerm(nx - m,newCoef)
+ concat(term,iDivide(sum,sumRefer,y,yRefer,rym,m,refer,nx - m + 1))
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := retract(elt xRefer)@I
+ setelt(refer,(degr - m) :: COM)
+ iDivide(x,xRefer,y,yRefer,rym,m,refer,degr - m + 1)
+
+ divide(ups1,deg1,ups2,deg2,r) ==
+ xRefer := getRef ups1; x := getStream ups1
+ yRefer := getRef ups2; y := getStream ups2
+ refer := ref((deg1 - deg2) :: COM)
+ makeSeries(refer,iDivide(x,xRefer,y,yRefer,r,deg2,refer,deg1 - deg2 + 1))
+
+ iExquo(ups1,ups2,taylor?) ==
+ xRefer := getRef ups1; x := getStream ups1
+ yRefer := getRef ups2; y := getStream ups2
+ n : I := 0
+ -- try to find first non-zero term in y
+ -- give up after 1000 lazy evaluations
+ while not explicitEntries? y repeat
+ explicitlyEmpty? y => return "failed"
+ lazyEvaluate y
+ (n := n + 1) > 1000 => return "failed"
+ yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
+ (ry := recip yCoef) case "failed" => "failed"
+ nn := ny :: COM
+ if taylor? then
+ while (elt(xRefer) < nn) repeat
+ explicitlyEmpty? x => return 0
+ explicitEntries? x => return "failed"
+ lazyEvaluate x
+ -- check if ups2 is a monomial
+ empty? rst y => iMap2(#1 * (ry :: Coef),#1 - ny,false,ups1)
+ explicitlyEmpty? x => 0
+ nx :=
+ explicitEntries? x =>
+ ((deg := getExpon frst x) < ny) and taylor? => return "failed"
+ deg - 1
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ retract(elt xRefer)@I
+ divide(ups1,nx,ups2,ny,ry :: Coef)
+
+ taylorQuoByVar ups ==
+ iMap2(#1,#1 - 1,false,ups - monomial(coefficient(ups,0),0))
+
+ compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n) == delay
+ -- when this function is called, we are computing the nth order
+ -- coefficient of the composite
+ explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
+ -- if terms in 'x' up to order n have not been computed,
+ -- apply lazy evaluation
+ nn := n :: COM; yyOrd := yOrd :: COM
+ while (yyOrd * elt(xRefer)) < nn repeat lazyEvaluate x
+ explicitEntries? x =>
+ xCoef := getCoef(xTerm := frst x); n1 := getExpon xTerm
+ zero? n1 =>
+ setelt(refer,n1 :: COM)
+ concat(makeTerm(n1,xCoef),_
+ compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n1 + 1))
+ yn1 := yn0 * y1 ** ((n1 - n0) :: NNI)
+ z := getStream yn1; zRefer := getRef yn1
+ degr := yOrd * n1; prodRefer := ref((degr - 1) :: COM)
+ prod := iMap1(xCoef * #1,#1,true,z,zRefer,prodRefer,degr)
+ coRefer := ref((degr + yOrd - 1) :: COM)
+ co := compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn1,n1,coRefer,degr + yOrd)
+ setelt(refer,(degr - 1) :: COM)
+ iPlus1(#1 + #2,prod,prodRefer,co,coRefer,refer,degr)
+ -- can't have elt(xRefer) = infty unless all terms have been computed
+ degr := yOrd * (retract(elt xRefer)@I + 1)
+ setelt(refer,(degr - 1) :: COM)
+ compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,degr)
+
+ iCompose(ups1,ups2) ==
+ x := getStream ups1; xRefer := getRef ups1
+ y := getStream ups2; yRefer := getRef ups2
+ -- try to compute the order of 'ups2'
+ n : I := _$streamCount$Lisp
+ for i in 1..n while not explicitEntries? y repeat
+ explicitlyEmpty? y => coefficient(ups1,0) :: %
+ lazyEvaluate y
+ explicitlyEmpty? y => coefficient(ups1,0) :: %
+ yOrd : I :=
+ explicitEntries? y => getExpon frst y
+ retract(elt yRefer)@I
+ compRefer := ref((-1) :: COM)
+ makeSeries(compRefer,_
+ compose0(x,xRefer,y,yRefer,yOrd,ups2,1,0,compRefer,0))
+
+ if Coef has Algebra Fraction Integer then
+
+ integrate x == iMap2(1/(#2 + 1) * #1,#1 + 1,true,x)
+
+--% Fixed point computations
+
+ Ys ==> Y$ParadoxicalCombinatorsForStreams(Term)
+
+ integ0: (ST,REF,REF,I) -> ST
+ integ0(x,intRef,ansRef,n) == delay
+ nLess1 := (n - 1) :: COM
+ while (elt intRef) < nLess1 repeat lazyEvaluate x
+ explicitlyEmpty? x => (setelt(ansRef,plusInfinity()); empty())
+ explicitEntries? x =>
+ xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
+ setelt(ansRef,(n1 := (nx + 1)) :: COM)
+ concat(makeTerm(n1,inv(n1 :: RN) * xCoef),_
+ integ0(rst x,intRef,ansRef,n1))
+ -- can't have elt(intRef) = infty unless all terms have been computed
+ degr := retract(elt intRef)@I; setelt(ansRef,(degr + 1) :: COM)
+ integ0(x,intRef,ansRef,degr + 2)
+
+ integ1: (ST,REF,REF) -> ST
+ integ1(x,intRef,ansRef) == integ0(x,intRef,ansRef,1)
+
+ lazyInteg: (Coef,() -> ST,REF,REF) -> ST
+ lazyInteg(a,xf,intRef,ansRef) ==
+ ansStr : ST := integ1(delay xf,intRef,ansRef)
+ concat(makeTerm(0,a),ansStr)
+
+ cPower(f,r) ==
+ -- computes f^r. f should have constant coefficient 1.
+ fp := differentiate f
+ fInv := iExquo(1,f,false) :: %; y := r * fp * fInv
+ yRef := getRef y; yStr := getStream y
+ intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
+ ansStr := Ys lazyInteg(1,iTimes(#1,ansRef,yStr,yRef,intRef,0),_
+ intRef,ansRef)
+ makeSeries(ansRef,ansStr)
+
+ iExp: (%,Coef) -> %
+ iExp(f,cc) ==
+ -- computes exp(f). cc = exp coefficient(f,0)
+ fp := differentiate f
+ fpRef := getRef fp; fpStr := getStream fp
+ intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
+ ansStr := Ys lazyInteg(cc,iTimes(#1,ansRef,fpStr,fpRef,intRef,0),_
+ intRef,ansRef)
+ makeSeries(ansRef,ansStr)
+
+ sincos0: (Coef,Coef,L ST,REF,REF,ST,REF,ST,REF) -> L ST
+ sincos0(sinc,cosc,list,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2) ==
+ sinStr := first list; cosStr := second list
+ prodRef1 := ref((-1) :: COM); prodRef2 := ref((-1) :: COM)
+ prodStr1 := iTimes(cosStr,cosRef,fpStr,fpRef,prodRef1,0)
+ prodStr2 := iTimes(sinStr,sinRef,fpStr2,fpRef2,prodRef2,0)
+ [lazyInteg(sinc,prodStr1,prodRef1,sinRef),_
+ lazyInteg(cosc,prodStr2,prodRef2,cosRef)]
+
+ iSincos: (%,Coef,Coef,I) -> Record(%sin: %, %cos: %)
+ iSincos(f,sinc,cosc,sign) ==
+ fp := differentiate f
+ fpRef := getRef fp; fpStr := getStream fp
+-- fp2 := (one? sign => fp; -fp)
+ fp2 := ((sign = 1) => fp; -fp)
+ fpRef2 := getRef fp2; fpStr2 := getStream fp2
+ sinRef := ref(0 :: COM); cosRef := ref(0 :: COM)
+ sincos :=
+ Ys(sincos0(sinc,cosc,#1,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2),2)
+ sinStr := (zero? sinc => rst first sincos; first sincos)
+ cosStr := (zero? cosc => rst second sincos; second sincos)
+ [makeSeries(sinRef,sinStr),makeSeries(cosRef,cosStr)]
+
+ tan0: (Coef,ST,REF,ST,REF,I) -> ST
+ tan0(cc,ansStr,ansRef,fpStr,fpRef,sign) ==
+ sqRef := ref((-1) :: COM)
+ sqStr := iTimes(ansStr,ansRef,ansStr,ansRef,sqRef,0)
+ one : % := 1; oneStr := getStream one; oneRef := getRef one
+ yRef := ref((-1) :: COM)
+ yStr : ST :=
+-- one? sign => iPlus1(#1 + #2,oneStr,oneRef,sqStr,sqRef,yRef,0)
+ (sign = 1) => iPlus1(#1 + #2,oneStr,oneRef,sqStr,sqRef,yRef,0)
+ iPlus1(#1 - #2,oneStr,oneRef,sqStr,sqRef,yRef,0)
+ intRef := ref((-1) :: COM)
+ lazyInteg(cc,iTimes(yStr,yRef,fpStr,fpRef,intRef,0),intRef,ansRef)
+
+ iTan: (%,%,Coef,I) -> %
+ iTan(f,fp,cc,sign) ==
+ -- computes the tangent (and related functions) of f.
+ fpRef := getRef fp; fpStr := getStream fp
+ ansRef := ref(0 :: COM)
+ ansStr := Ys tan0(cc,#1,ansRef,fpStr,fpRef,sign)
+ zero? cc => makeSeries(ansRef,rst ansStr)
+ makeSeries(ansRef,ansStr)
+
+--% Error Reporting
+
+ TRCONST : SG := "series expansion involves transcendental constants"
+ NPOWERS : SG := "series expansion has terms of negative degree"
+ FPOWERS : SG := "series expansion has terms of fractional degree"
+ MAYFPOW : SG := "series expansion may have terms of fractional degree"
+ LOGS : SG := "series expansion has logarithmic term"
+ NPOWLOG : SG :=
+ "series expansion has terms of negative degree or logarithmic term"
+ NOTINV : SG := "leading coefficient not invertible"
+
+--% Rational powers and transcendental functions
+
+ orderOrFailed : % -> Union(I,"failed")
+ orderOrFailed uts ==
+ -- returns the order of x or "failed"
+ -- if -1 is returned, the series is identically zero
+ x := getStream uts
+ for n in 0..1000 repeat
+ explicitlyEmpty? x => return -1
+ explicitEntries? x => return getExpon frst x
+ lazyEvaluate x
+ "failed"
+
+ RATPOWERS : Boolean := Coef has "**": (Coef,RN) -> Coef
+ TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory
+
+ cRationalPower(uts,r) ==
+ (ord0 := orderOrFailed uts) case "failed" =>
+ error "**: series with many leading zero coefficients"
+ order := ord0 :: I
+ (n := order exquo denom(r)) case "failed" =>
+ error "**: rational power does not exist"
+ cc := coefficient(uts,order)
+ (ccInv := recip cc) case "failed" => error concat("**: ",NOTINV)
+ ccPow :=
+-- one? cc => cc
+ (cc = 1) => cc
+-- one? denom r =>
+ (denom r) = 1 =>
+ not negative?(num := numer r) => cc ** (num :: NNI)
+ (ccInv :: Coef) ** ((-num) :: NNI)
+ RATPOWERS => cc ** r
+ error "** rational power of coefficient undefined"
+ uts1 := (ccInv :: Coef) * uts
+ uts2 := uts1 * monomial(1,-order)
+ monomial(ccPow,(n :: I) * numer(r)) * cPower(uts2,r :: Coef)
+
+ cExp uts ==
+ zero?(cc := coefficient(uts,0)) => iExp(uts,1)
+ TRANSFCN => iExp(uts,exp cc)
+ error concat("exp: ",TRCONST)
+
+ cLog uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ error "log: constant coefficient should not be 0"
+-- one? cc => integrate(differentiate(uts) * (iExquo(1,uts,true) :: %))
+ (cc = 1) => integrate(differentiate(uts) * (iExquo(1,uts,true) :: %))
+ TRANSFCN =>
+ y := iExquo(1,uts,true) :: %
+ (log(cc) :: %) + integrate(y * differentiate(uts))
+ error concat("log: ",TRCONST)
+
+ sincos: % -> Record(%sin: %, %cos: %)
+ sincos uts ==
+ zero?(cc := coefficient(uts,0)) => iSincos(uts,0,1,-1)
+ TRANSFCN => iSincos(uts,sin cc,cos cc,-1)
+ error concat("sincos: ",TRCONST)
+
+ cSin uts == sincos(uts).%sin
+ cCos uts == sincos(uts).%cos
+
+ cTan uts ==
+ zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,1)
+ TRANSFCN => iTan(uts,differentiate uts,tan cc,1)
+ error concat("tan: ",TRCONST)
+
+ cCot uts ==
+ zero? uts => error "cot: cot(0) is undefined"
+ zero?(cc := coefficient(uts,0)) => error error concat("cot: ",NPOWERS)
+ TRANSFCN => iTan(uts,-differentiate uts,cot cc,1)
+ error concat("cot: ",TRCONST)
+
+ cSec uts ==
+ zero?(cc := coefficient(uts,0)) => iExquo(1,cCos uts,true) :: %
+ TRANSFCN =>
+ cosUts := cCos uts
+ zero? coefficient(cosUts,0) => error concat("sec: ",NPOWERS)
+ iExquo(1,cosUts,true) :: %
+ error concat("sec: ",TRCONST)
+
+ cCsc uts ==
+ zero? uts => error "csc: csc(0) is undefined"
+ TRANSFCN =>
+ sinUts := cSin uts
+ zero? coefficient(sinUts,0) => error concat("csc: ",NPOWERS)
+ iExquo(1,sinUts,true) :: %
+ error concat("csc: ",TRCONST)
+
+ cAsin uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ integrate(cRationalPower(1 - uts*uts,-1/2) * differentiate(uts))
+ TRANSFCN =>
+ x := 1 - uts * uts
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("asin: ",MAYFPOW)
+ (order := ord :: I) = -1 => return asin(cc) :: %
+ odd? order => error concat("asin: ",FPOWERS)
+ c0 := asin(cc) :: %
+ c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
+ c0 := asin(cc) :: %
+ c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
+ error concat("asin: ",TRCONST)
+
+ cAcos uts ==
+ zero? uts =>
+ TRANSFCN => acos(0)$Coef :: %
+ error concat("acos: ",TRCONST)
+ TRANSFCN =>
+ x := 1 - uts * uts
+ cc := coefficient(uts,0)
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("acos: ",MAYFPOW)
+ (order := ord :: I) = -1 => return acos(cc) :: %
+ odd? order => error concat("acos: ",FPOWERS)
+ c0 := acos(cc) :: %
+ c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
+ c0 := acos(cc) :: %
+ c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
+ error concat("acos: ",TRCONST)
+
+ cAtan uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ y := iExquo(1,(1 :: %) + uts*uts,true) :: %
+ integrate(y * (differentiate uts))
+ TRANSFCN =>
+ (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
+ error concat("atan: ",LOGS)
+ (atan(cc) :: %) + integrate((y :: %) * (differentiate uts))
+ error concat("atan: ",TRCONST)
+
+ cAcot uts ==
+ TRANSFCN =>
+ (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
+ error concat("acot: ",LOGS)
+ cc := coefficient(uts,0)
+ (acot(cc) :: %) + integrate(-(y :: %) * (differentiate uts))
+ error concat("acot: ",TRCONST)
+
+ cAsec uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ error "asec: constant coefficient should not be 0"
+ TRANSFCN =>
+ x := uts * uts - 1
+ y :=
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("asec: ",MAYFPOW)
+ (order := ord :: I) = -1 => return asec(cc) :: %
+ odd? order => error concat("asec: ",FPOWERS)
+ cRationalPower(x,-1/2) * differentiate(uts)
+ cRationalPower(x,-1/2) * differentiate(uts)
+ (z := iExquo(y,uts,true)) case "failed" =>
+ error concat("asec: ",NOTINV)
+ (asec(cc) :: %) + integrate(z :: %)
+ error concat("asec: ",TRCONST)
+
+ cAcsc uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ error "acsc: constant coefficient should not be 0"
+ TRANSFCN =>
+ x := uts * uts - 1
+ y :=
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("acsc: ",MAYFPOW)
+ (order := ord :: I) = -1 => return acsc(cc) :: %
+ odd? order => error concat("acsc: ",FPOWERS)
+ -cRationalPower(x,-1/2) * differentiate(uts)
+ -cRationalPower(x,-1/2) * differentiate(uts)
+ (z := iExquo(y,uts,true)) case "failed" =>
+ error concat("asec: ",NOTINV)
+ (acsc(cc) :: %) + integrate(z :: %)
+ error concat("acsc: ",TRCONST)
+
+ sinhcosh: % -> Record(%sinh: %, %cosh: %)
+ sinhcosh uts ==
+ zero?(cc := coefficient(uts,0)) =>
+ tmp := iSincos(uts,0,1,1)
+ [tmp.%sin,tmp.%cos]
+ TRANSFCN =>
+ tmp := iSincos(uts,sinh cc,cosh cc,1)
+ [tmp.%sin,tmp.%cos]
+ error concat("sinhcosh: ",TRCONST)
+
+ cSinh uts == sinhcosh(uts).%sinh
+ cCosh uts == sinhcosh(uts).%cosh
+
+ cTanh uts ==
+ zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,-1)
+ TRANSFCN => iTan(uts,differentiate uts,tanh cc,-1)
+ error concat("tanh: ",TRCONST)
+
+ cCoth uts ==
+ tanhUts := cTanh uts
+ zero? tanhUts => error "coth: coth(0) is undefined"
+ zero? coefficient(tanhUts,0) => error concat("coth: ",NPOWERS)
+ iExquo(1,tanhUts,true) :: %
+
+ cSech uts ==
+ coshUts := cCosh uts
+ zero? coefficient(coshUts,0) => error concat("sech: ",NPOWERS)
+ iExquo(1,coshUts,true) :: %
+
+ cCsch uts ==
+ sinhUts := cSinh uts
+ zero? coefficient(sinhUts,0) => error concat("csch: ",NPOWERS)
+ iExquo(1,sinhUts,true) :: %
+
+ cAsinh uts ==
+ x := 1 + uts * uts
+ zero?(cc := coefficient(uts,0)) => cLog(uts + cRationalPower(x,1/2))
+ TRANSFCN =>
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("asinh: ",MAYFPOW)
+ (order := ord :: I) = -1 => return asinh(cc) :: %
+ odd? order => error concat("asinh: ",FPOWERS)
+ -- the argument to 'log' must have a non-zero constant term
+ cLog(uts + cRationalPower(x,1/2))
+ error concat("asinh: ",TRCONST)
+
+ cAcosh uts ==
+ zero? uts =>
+ TRANSFCN => acosh(0)$Coef :: %
+ error concat("acosh: ",TRCONST)
+ TRANSFCN =>
+ cc := coefficient(uts,0); x := uts*uts - 1
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("acosh: ",MAYFPOW)
+ (order := ord :: I) = -1 => return acosh(cc) :: %
+ odd? order => error concat("acosh: ",FPOWERS)
+ -- the argument to 'log' must have a non-zero constant term
+ cLog(uts + cRationalPower(x,1/2))
+ cLog(uts + cRationalPower(x,1/2))
+ error concat("acosh: ",TRCONST)
+
+ cAtanh uts ==
+ half := inv(2 :: RN) :: Coef
+ zero?(cc := coefficient(uts,0)) =>
+ half * (cLog(1 + uts) - cLog(1 - uts))
+ TRANSFCN =>
+ cc = 1 or cc = -1 => error concat("atanh: ",LOGS)
+ half * (cLog(1 + uts) - cLog(1 - uts))
+ error concat("atanh: ",TRCONST)
+
+ cAcoth uts ==
+ zero? uts =>
+ TRANSFCN => acoth(0)$Coef :: %
+ error concat("acoth: ",TRCONST)
+ TRANSFCN =>
+ cc := coefficient(uts,0); half := inv(2 :: RN) :: Coef
+ cc = 1 or cc = -1 => error concat("acoth: ",LOGS)
+ half * (cLog(uts + 1) - cLog(uts - 1))
+ error concat("acoth: ",TRCONST)
+
+ cAsech uts ==
+ zero? uts => error "asech: asech(0) is undefined"
+ TRANSFCN =>
+ zero?(cc := coefficient(uts,0)) =>
+ error concat("asech: ",NPOWLOG)
+ x := 1 - uts * uts
+ cc = 1 or cc = -1 =>
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("asech: ",MAYFPOW)
+ (order := ord :: I) = -1 => return asech(cc) :: %
+ odd? order => error concat("asech: ",FPOWERS)
+ (utsInv := iExquo(1,uts,true)) case "failed" =>
+ error concat("asech: ",NOTINV)
+ cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
+ (utsInv := iExquo(1,uts,true)) case "failed" =>
+ error concat("asech: ",NOTINV)
+ cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
+ error concat("asech: ",TRCONST)
+
+ cAcsch uts ==
+ zero? uts => error "acsch: acsch(0) is undefined"
+ TRANSFCN =>
+ zero?(cc := coefficient(uts,0)) => error concat("acsch: ",NPOWLOG)
+ x := uts * uts + 1
+ -- compute order of 'x'
+ (ord := orderOrFailed x) case "failed" =>
+ error concat("acsc: ",MAYFPOW)
+ (order := ord :: I) = -1 => return acsch(cc) :: %
+ odd? order => error concat("acsch: ",FPOWERS)
+ (utsInv := iExquo(1,uts,true)) case "failed" =>
+ error concat("acsch: ",NOTINV)
+ cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
+ error concat("acsch: ",TRCONST)
+
+--% Output forms
+
+ -- check a global Lisp variable
+ factorials?() == false
+
+ termOutput(k,c,vv) ==
+ -- creates a term c * vv ** k
+ k = 0 => c :: OUT
+ mon := (k = 1 => vv; vv ** (k :: OUT))
+-- if factorials?() and k > 1 then
+-- c := factorial(k)$IntegerCombinatoricFunctions * c
+-- mon := mon / hconcat(k :: OUT,"!" :: OUT)
+ c = 1 => mon
+ c = -1 => -mon
+ (c :: OUT) * mon
+
+ -- check a global Lisp variable
+ showAll?() == true
+
+ seriesToOutputForm(st,refer,var,cen,r) ==
+ vv :=
+ zero? cen => var :: OUT
+ paren(var :: OUT - cen :: OUT)
+ l : L OUT := empty()
+ while explicitEntries? st repeat
+ term := frst st
+ l := concat(termOutput(getExpon(term) * r,getCoef term,vv),l)
+ st := rst st
+ l :=
+ explicitlyEmpty? st => l
+ (deg := retractIfCan(elt refer)@Union(I,"failed")) case I =>
+ concat(prefix("O" :: OUT,[vv ** ((((deg :: I) + 1) * r) :: OUT)]),l)
+ l
+ empty? l => (0$Coef) :: OUT
+ reduce("+",reverse_! l)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<domain ISUPS InnerSparseUnivariatePowerSeries>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}