diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/sgcf.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/sgcf.spad.pamphlet')
-rw-r--r-- | src/algebra/sgcf.spad.pamphlet | 526 |
1 files changed, 526 insertions, 0 deletions
diff --git a/src/algebra/sgcf.spad.pamphlet b/src/algebra/sgcf.spad.pamphlet new file mode 100644 index 00000000..b2740766 --- /dev/null +++ b/src/algebra/sgcf.spad.pamphlet @@ -0,0 +1,526 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra sgcf.spad} +\author{Johannes Grabmeier, Thorsten Werther} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package SGCF SymmetricGroupCombinatoricFunctions} +<<package SGCF SymmetricGroupCombinatoricFunctions>>= +)abbrev package SGCF SymmetricGroupCombinatoricFunctions +++ Authors: Johannes Grabmeier, Thorsten Werther +++ Date Created: 03 September 1988 +++ Date Last Updated: 07 June 1990 +++ Basic Operations: nextPartition, numberOfImproperPartitions, +++ listYoungTableaus, subSet, unrankImproperPartitions0 +++ Related Constructors: IntegerCombinatoricFunctions +++ Also See: RepresentationTheoryPackage1, RepresentationTheoryPackage2, +++ IrrRepSymNatPackage +++ AMS Classifications: +++ Keywords: improper partition, partition, subset, Coleman +++ References: +++ G. James/ A. Kerber: The Representation Theory of the Symmetric +++ Group. Encycl. of Math. and its Appl., Vol. 16., Cambridge +++ Univ. Press 1981, ISBN 0-521-30236-6. +++ S.G. Williamson: Combinatorics for Computer Science, +++ Computer Science Press, Rockville, Maryland, USA, ISBN 0-88175-020-4. +++ A. Nijenhuis / H.S. Wilf: Combinatoral Algorithms, Academic Press 1978. +++ ISBN 0-12-519260-6. +++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and +++ their Realization in the Computer Algebra System Scratchpad, +++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23. +++ Description: +++ SymmetricGroupCombinatoricFunctions contains combinatoric +++ functions concerning symmetric groups and representation +++ theory: list young tableaus, improper partitions, subsets +++ bijection of Coleman. + +SymmetricGroupCombinatoricFunctions(): public == private where + + NNI ==> NonNegativeInteger + I ==> Integer + L ==> List + M ==> Matrix + V ==> Vector + B ==> Boolean + ICF ==> IntegerCombinatoricFunctions Integer + + public ==> with + +-- IS THERE A WORKING DOMAIN Tableau ?? +-- coerce : M I -> Tableau(I) +-- ++ coerce(ytab) coerces the Young-Tableau ytab to an element of +-- ++ the domain Tableau(I). + + coleman : (L I, L I, L I) -> M I + ++ coleman(alpha,beta,pi): + ++ there is a bijection from the set of matrices having nonnegative + ++ entries and row sums {\em alpha}, column sums {\em beta} + ++ to the set of {\em Salpha - Sbeta} double cosets of the + ++ symmetric group {\em Sn}. ({\em Salpha} is the Young subgroup + ++ corresponding to the improper partition {\em alpha}). + ++ For a representing element {\em pi} of such a double coset, + ++ coleman(alpha,beta,pi) generates the Coleman-matrix + ++ corresponding to {\em alpha, beta, pi}. + ++ Note: The permutation {\em pi} of {\em {1,2,...,n}} has to be given + ++ in list form. + ++ Note: the inverse of this map is {\em inverseColeman} + ++ (if {\em pi} is the lexicographical smallest permutation + ++ in the coset). For details see James/Kerber. + inverseColeman : (L I, L I, M I) -> L I + ++ inverseColeman(alpha,beta,C): + ++ there is a bijection from the set of matrices having nonnegative + ++ entries and row sums {\em alpha}, column sums {\em beta} + ++ to the set of {\em Salpha - Sbeta} double cosets of the + ++ symmetric group {\em Sn}. ({\em Salpha} is the Young subgroup + ++ corresponding to the improper partition {\em alpha}). + ++ For such a matrix C, inverseColeman(alpha,beta,C) + ++ calculates the lexicographical smallest {\em pi} in the + ++ corresponding double coset. + ++ Note: the resulting permutation {\em pi} of {\em {1,2,...,n}} + ++ is given in list form. + ++ Notes: the inverse of this map is {\em coleman}. + ++ For details, see James/Kerber. + listYoungTableaus : (L I) -> L M I + ++ listYoungTableaus(lambda) where {\em lambda} is a proper partition + ++ generates the list of all standard tableaus of shape {\em lambda} + ++ by means of lattice permutations. The numbers of the lattice + ++ permutation are interpreted as column labels. Hence the + ++ contents of these lattice permutations are the conjugate of + ++ {\em lambda}. + ++ Notes: the functions {\em nextLatticePermutation} and + ++ {\em makeYoungTableau} are used. + ++ The entries are from {\em 0,...,n-1}. + makeYoungTableau : (L I,L I) -> M I + ++ makeYoungTableau(lambda,gitter) computes for a given lattice + ++ permutation {\em gitter} and for an improper partition {\em lambda} + ++ the corresponding standard tableau of shape {\em lambda}. + ++ Notes: see {\em listYoungTableaus}. + ++ The entries are from {\em 0,...,n-1}. + nextColeman : (L I, L I, M I) -> M I + ++ nextColeman(alpha,beta,C) generates the next Coleman matrix + ++ of column sums {\em alpha} and row sums {\em beta} according + ++ to the lexicographical order from bottom-to-top. + ++ The first Coleman matrix is achieved by {\em C=new(1,1,0)}. + ++ Also, {\em new(1,1,0)} indicates that C is the last Coleman matrix. + nextLatticePermutation : (L I, L I, B) -> L I + ++ nextLatticePermutation(lambda,lattP,constructNotFirst) generates + ++ the lattice permutation according to the proper partition + ++ {\em lambda} succeeding the lattice permutation {\em lattP} in + ++ lexicographical order as long as {\em constructNotFirst} is true. + ++ If {\em constructNotFirst} is false, the first lattice permutation + ++ is returned. + ++ The result {\em nil} indicates that {\em lattP} has no successor. + nextPartition : (V I, V I, I) -> V I + ++ nextPartition(gamma,part,number) generates the partition of + ++ {\em number} which follows {\em part} according to the right-to-left + ++ lexicographical order. The partition has the property that + ++ its components do not exceed the corresponding components of + ++ {\em gamma}. The first partition is achieved by {\em part=[]}. + ++ Also, {\em []} indicates that {\em part} is the last partition. + nextPartition : (L I, V I, I) -> V I + ++ nextPartition(gamma,part,number) generates the partition of + ++ {\em number} which follows {\em part} according to the right-to-left + ++ lexicographical order. The partition has the property that + ++ its components do not exceed the corresponding components of + ++ {\em gamma}. the first partition is achieved by {\em part=[]}. + ++ Also, {\em []} indicates that {\em part} is the last partition. + numberOfImproperPartitions: (I,I) -> I + ++ numberOfImproperPartitions(n,m) computes the number of partitions + ++ of the nonnegative integer n in m nonnegative parts with regarding + ++ the order (improper partitions). + ++ Example: {\em numberOfImproperPartitions (3,3)} is 10, + ++ since {\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], + ++ [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. + ++ Note: this operation has a recursive implementation. + subSet : (I,I,I) -> L I + ++ subSet(n,m,k) calculates the {\em k}-th {\em m}-subset of the set + ++ {\em 0,1,...,(n-1)} in the lexicographic order considered as + ++ a decreasing map from {\em 0,...,(m-1)} into {\em 0,...,(n-1)}. + ++ See S.G. Williamson: Theorem 1.60. + ++ Error: if not {\em (0 <= m <= n and 0 < = k < (n choose m))}. + unrankImproperPartitions0 : (I,I,I) -> L I + ++ unrankImproperPartitions0(n,m,k) computes the {\em k}-th improper + ++ partition of nonnegative n in m nonnegative parts in reverse + ++ lexicographical order. + ++ Example: {\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < + ++ [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. + ++ Error: if k is negative or too big. + ++ Note: counting of subtrees is done by + ++ \spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}. + + unrankImproperPartitions1: (I,I,I) -> L I + ++ unrankImproperPartitions1(n,m,k) computes the {\em k}-th improper + ++ partition of nonnegative n in at most m nonnegative parts + ++ ordered as follows: first, in reverse + ++ lexicographically according to their non-zero parts, then + ++ according to their positions (i.e. lexicographical order + ++ using {\em subSet}: {\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < + ++ [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). + ++ Note: counting of subtrees is done by + ++ {\em numberOfImproperPartitionsInternal}. + + private == add + + import Set I + + -- declaration of local functions + + + numberOfImproperPartitionsInternal: (I,I,I) -> I + -- this is used as subtree counting function in + -- "unrankImproperPartitions1". For (n,m,cm) it counts + -- the following set of m-tuples: The first (from left + -- to right) m-cm non-zero entries are equal, the remaining + -- positions sum up to n. Example: (3,3,2) counts + -- [x,3,0], [x,0,3], [0,x,3], [x,2,1], [x,1,2], x non-zero. + + + -- definition of local functions + + + numberOfImproperPartitionsInternal(n,m,cm) == + n = 0 => binomial(m,cm)$ICF + cm = 0 and n > 0 => 0 + s := 0 + for i in 0..n-1 repeat + s := s + numberOfImproperPartitionsInternal(i,m,cm-1) + s + + + -- definition of exported functions + + numberOfImproperPartitions(n,m) == + if n < 0 or m < 1 then return 0 + if m = 1 or n = 0 then return 1 + s := 0 + for i in 0..n repeat + s := s + numberOfImproperPartitions(n-i,m-1) + s + + + unrankImproperPartitions0(n,m,k) == + l : L I := nil$(L I) + k < 0 => error"counting of partitions is started at 0" + k >= numberOfImproperPartitions(n,m) => + error"there are not so many partitions" + for t in 0..(m-2) repeat + s : I := 0 + for y in 0..n repeat + sOld := s + s := s + numberOfImproperPartitions(n-y,m-t-1) + if s > k then leave + l := append(l,list(y)$(L I))$(L I) + k := k - sOld + n := n - y + l := append(l,list(n)$(L I))$(L I) + l + + + unrankImproperPartitions1(n,m,k) == + -- we use the counting procedure of the leaves in a tree + -- having the following structure: First of all non-zero + -- labels for the sons. If addition along a path gives n, + -- then we go on creating the subtree for (n choose cm) + -- where cm is the length of the path. These subsets determine + -- the positions for the non-zero labels for the partition + -- to be formeded. The remaining positions are filled by zeros. + nonZeros : L I := nil$(L I) + partition : V I := new(m::NNI,0$I)$(V I) + k < 0 => nonZeros + k >= numberOfImproperPartitions(n,m) => nonZeros + cm : I := m --cm gives the depth of the tree + while n ^= 0 repeat + s : I := 0 + cm := cm - 1 + for y in n..1 by -1 repeat --determination of the next son + sOld := s -- remember old s + -- this functions counts the number of elements in a subtree + s := s + numberOfImproperPartitionsInternal(n-y,m,cm) + if s > k then leave + -- y is the next son, so put it into the pathlist "nonZero" + nonZeros := append(nonZeros,list(y)$(L I))$(L I) + k := k - sOld --updating + n := n - y --updating + --having found all m-cm non-zero entries we change the structure + --of the tree and determine the non-zero positions + nonZeroPos : L I := reverse subSet(m,m-cm,k) + --building the partition + for i in 1..m-cm repeat partition.(1+nonZeroPos.i) := nonZeros.i + entries partition + + + subSet(n,m,k) == + k < 0 or n < 0 or m < 0 or m > n => + error "improper argument to subSet" + bin : I := binomial$ICF (n,m) + k >= bin => + error "there are not so many subsets" + l : L I := [] + n = 0 => l + mm : I := k + s : I := m + for t in 0..(m-1) repeat + for y in (s-1)..(n+1) repeat + if binomial$ICF (y,s) > mm then leave + l := append (l,list(y-1)$(L I)) + mm := mm - binomial$ICF (y-1,s) + s := s-1 + l + + + nextLatticePermutation(lambda, lattP, constructNotFirst) == + + lprime : L I := conjugate(lambda)$PartitionsAndPermutations + columns : NNI := (first(lambda)$(L I))::NNI + rows : NNI := (first(lprime)$(L I))::NNI + n : NNI :=(+/lambda)::NNI + + not constructNotFirst => -- first lattice permutation + lattP := nil$(L I) + for i in columns..1 by -1 repeat + for l in 1..lprime(i) repeat + lattP := cons(i,lattP) + lattP + + help : V I := new(columns,0) -- entry help(i) stores the number + -- of occurences of number i on our way from right to left + rightPosition : NNI := n + leftEntry : NNI := lattP(rightPosition)::NNI + ready : B := false + until (ready or (not constructNotFirst)) repeat + rightEntry : NNI := leftEntry + leftEntry := lattP(rightPosition-1)::NNI + help(rightEntry) := help(rightEntry) + 1 + -- search backward decreasing neighbour elements + if rightEntry > leftEntry then + if ((lprime(leftEntry)-help(leftEntry)) >_ + (lprime(rightEntry)-help(rightEntry)+1)) then + -- the elements may be swapped because the number of occurances + -- of leftEntry would still be greater than those of rightEntry + ready := true + j : NNI := leftEntry + 1 + -- search among the numbers leftEntry+1..rightEntry for the + -- smallest one which can take the place of leftEntry. + -- negation of condition above: + while (help(j)=0) or ((lprime(leftEntry)-lprime(j)) + < (help(leftEntry)-help(j)+2)) repeat j := j + 1 + lattP(rightPosition-1) := j + help(j) := help(j)-1 + help(leftEntry) := help(leftEntry) + 1 + -- reconstruct the rest of the list in increasing order + for l in rightPosition..n repeat + j := 0 + while help(1+j) = 0 repeat j := j + 1 + lattP(l::NNI) := j+1 + help(1+j) := help(1+j) - 1 + -- end of "if rightEntry > leftEntry" + rightPosition := (rightPosition-1)::NNI + if rightPosition = 1 then constructNotFirst := false + -- end of repeat-loop + not constructNotFirst => nil$(L I) + lattP + + + makeYoungTableau(lambda,gitter) == + lprime : L I := conjugate(lambda)$PartitionsAndPermutations + columns : NNI := (first(lambda)$(L I))::NNI + rows : NNI := (first(lprime)$(L I))::NNI + ytab : M I := new(rows,columns,0) + help : V I := new(columns,1) + i : I := -1 -- this makes the entries ranging from 0,..,n-1 + -- i := 0 would make it from 1,..,n. + j : I := 0 + for l in 1..maxIndex gitter repeat + j := gitter(l) + i := i + 1 + ytab(help(j),j) := i + help(j) := help(j) + 1 + ytab + + +-- coerce(ytab) == +-- lli := listOfLists(ytab)$(M I) +-- -- remove the filling zeros in each row. It is assumed that +-- -- that there are no such in row 0. +-- for i in 2..maxIndex lli repeat +-- THIS IS DEFINIVELY WRONG, I NEED A FUNCTION WHICH DELETES THE +-- 0s, in my version there are no mapping facilities yet. +-- deleteInPlace(not zero?,lli i) +-- tableau(lli)$Tableau(I) + + + listYoungTableaus(lambda) == + lattice : L I + ytab : M I + younglist : L M I := nil$(L M I) + lattice := nextLatticePermutation(lambda,lattice,false) + until null lattice repeat + ytab := makeYoungTableau(lambda,lattice) + younglist := append(younglist,[ytab]$(L M I))$(L M I) + lattice := nextLatticePermutation(lambda,lattice,true) + younglist + + + nextColeman(alpha,beta,C) == + nrow : NNI := #beta + ncol : NNI := #alpha + vnull : V I := vector(nil()$(L I)) -- empty vector + vzero : V I := new(ncol,0) + vrest : V I := new(ncol,0) + cnull : M I := new(1,1,0) + coleman := copy C + if coleman ^= cnull then + -- look for the first row of "coleman" that has a succeeding + -- partition, this can be atmost row nrow-1 + i : NNI := (nrow-1)::NNI + vrest := row(coleman,i) + row(coleman,nrow) + --for k in 1..ncol repeat + -- vrest(k) := coleman(i,k) + coleman(nrow,k) + succ := nextPartition(vrest,row(coleman, i),beta(i)) + while (succ = vnull) repeat + if i = 1 then return cnull -- part is last partition + i := (i - 1)::NNI + --for k in 1..ncol repeat + -- vrest(k) := vrest(k) + coleman(i,k) + vrest := vrest + row(coleman,i) + succ := nextPartition(vrest, row(coleman, i), beta(i)) + j : I := i + coleman := setRow_!(coleman, i, succ) + --for k in 1..ncol repeat + -- vrest(k) := vrest(k) - coleman(i,k) + vrest := vrest - row(coleman,i) + else + vrest := vector alpha + -- for k in 1..ncol repeat + -- vrest(k) := alpha(k) + coleman := new(nrow,ncol,0) + j : I := 0 + for i in (j+1)::NNI..nrow-1 repeat + succ := nextPartition(vrest,vnull,beta(i)) + coleman := setRow_!(coleman, i, succ) + vrest := vrest - succ + --for k in 1..ncol repeat + -- vrest(k) := vrest(k) - succ(k) + setRow_!(coleman, nrow, vrest) + + + nextPartition(gamma:V I, part:V I, number:I) == + nextPartition(entries gamma, part, number) + + + nextPartition(gamma:L I,part:V I,number:I) == + n : NNI := #gamma + vnull : V I := vector(nil()$(L I)) -- empty vector + if part ^= vnull then + i : NNI := 2 + sum := part(1) + while (part(i) = gamma(i)) or (sum = 0) repeat + sum := sum + part(i) + i := i + 1 + if i = 1+n then return vnull -- part is last partition + sum := sum - 1 + part(i) := part(i) + 1 + else + sum := number + part := new(n,0) + i := 1+n + j : NNI := 1 + while sum > gamma(j) repeat + part(j) := gamma(j) + sum := sum - gamma(j) + j := j + 1 + part(j) := sum + for k in j+1..i-1 repeat + part(k) := 0 + part + + + inverseColeman(alpha,beta,C) == + pi : L I := nil$(L I) + nrow : NNI := #beta + ncol : NNI := #alpha + help : V I := new(nrow,0) + sum : I := 1 + for i in 1..nrow repeat + help(i) := sum + sum := sum + beta(i) + for j in 1..ncol repeat + for i in 1..nrow repeat + for k in 2..1+C(i,j) repeat + pi := append(pi,list(help(i))$(L I)) + help(i) := help(i) + 1 + pi + + + coleman(alpha,beta,pi) == + nrow : NNI := #beta + ncol : NNI := #alpha + temp : L L I := nil$(L L I) + help : L I := nil$(L I) + colematrix : M I := new(nrow,ncol,0) + betasum : NNI := 0 + alphasum : NNI := 0 + for i in 1..ncol repeat + help := nil$(L I) + for j in alpha(i)..1 by-1 repeat + help := cons(pi(j::NNI+alphasum),help) + alphasum := (alphasum + alpha(i))::NNI + temp := append(temp,list(help)$(L L I)) + for i in 1..nrow repeat + help := nil$(L I) + for j in beta(i)..1 by-1 repeat + help := cons(j::NNI+betasum, help) + betasum := (betasum + beta(i))::NNI + for j in 1..ncol repeat + colematrix(i,j) := #intersect(brace(help),brace(temp(j))) + colematrix + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package SGCF SymmetricGroupCombinatoricFunctions>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |