aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/rderf.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/rderf.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/rderf.spad.pamphlet')
-rw-r--r--src/algebra/rderf.spad.pamphlet226
1 files changed, 226 insertions, 0 deletions
diff --git a/src/algebra/rderf.spad.pamphlet b/src/algebra/rderf.spad.pamphlet
new file mode 100644
index 00000000..33dcd1dd
--- /dev/null
+++ b/src/algebra/rderf.spad.pamphlet
@@ -0,0 +1,226 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra rderf.spad}
+\author{Manuel Bronstein}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{package RDETR TranscendentalRischDE}
+<<package RDETR TranscendentalRischDE>>=
+)abbrev package RDETR TranscendentalRischDE
+++ Risch differential equation, transcendental case.
+++ Author: Manuel Bronstein
+++ Date Created: Jan 1988
+++ Date Last Updated: 2 November 1995
+TranscendentalRischDE(F, UP): Exports == Implementation where
+ F : Join(Field, CharacteristicZero, RetractableTo Integer)
+ UP : UnivariatePolynomialCategory F
+
+ N ==> NonNegativeInteger
+ Z ==> Integer
+ RF ==> Fraction UP
+ REC ==> Record(a:UP, b:UP, c:UP, t:UP)
+ SPE ==> Record(b:UP, c:UP, m:Z, alpha:UP, beta:UP)
+ PSOL==> Record(ans:UP, nosol:Boolean)
+ ANS ==> Union(ans:PSOL, eq:SPE)
+ PSQ ==> Record(ans:RF, nosol:Boolean)
+
+ Exports ==> with
+ monomRDE: (RF,RF,UP->UP) -> Union(Record(a:UP,b:RF,c:RF,t:UP), "failed")
+ ++ monomRDE(f,g,D) returns \spad{[A, B, C, T]} such that
+ ++ \spad{y' + f y = g} has a solution if and only if \spad{y = Q / T},
+ ++ where Q satisfies \spad{A Q' + B Q = C} and has no normal pole.
+ ++ A and T are polynomials and B and C have no normal poles.
+ ++ D is the derivation to use.
+ baseRDE : (RF, RF) -> PSQ
+ ++ baseRDE(f, g) returns a \spad{[y, b]} such that \spad{y' + fy = g}
+ ++ if \spad{b = true}, y is a partial solution otherwise (no solution
+ ++ in that case).
+ ++ D is the derivation to use.
+ polyRDE : (UP, UP, UP, Z, UP -> UP) -> ANS
+ ++ polyRDE(a, B, C, n, D) returns either:
+ ++ 1. \spad{[Q, b]} such that \spad{degree(Q) <= n} and
+ ++ \spad{a Q'+ B Q = C} if \spad{b = true}, Q is a partial solution
+ ++ otherwise.
+ ++ 2. \spad{[B1, C1, m, \alpha, \beta]} such that any polynomial solution
+ ++ of degree at most n of \spad{A Q' + BQ = C} must be of the form
+ ++ \spad{Q = \alpha H + \beta} where \spad{degree(H) <= m} and
+ ++ H satisfies \spad{H' + B1 H = C1}.
+ ++ D is the derivation to use.
+
+ Implementation ==> add
+ import MonomialExtensionTools(F, UP)
+
+ getBound : (UP, UP, Z) -> Z
+ SPDEnocancel1: (UP, UP, Z, UP -> UP) -> PSOL
+ SPDEnocancel2: (UP, UP, Z, Z, F, UP -> UP) -> ANS
+ SPDE : (UP, UP, UP, Z, UP -> UP) -> Union(SPE, "failed")
+
+-- cancellation at infinity is possible, A is assumed nonzero
+-- needs tagged union because of branch choice problem
+-- always returns a PSOL in the base case (never a SPE)
+ polyRDE(aa, bb, cc, d, derivation) ==
+ n:Z
+ (u := SPDE(aa, bb, cc, d, derivation)) case "failed" => [[0, true]]
+ zero?(u.c) => [[u.beta, false]]
+-- baseCase? := one?(dt := derivation monomial(1, 1))
+ baseCase? := ((dt := derivation monomial(1, 1)) = 1)
+ n := degree(dt)::Z - 1
+ b0? := zero?(u.b)
+ (~b0?) and (baseCase? or degree(u.b) > max(0, n)) =>
+ answ := SPDEnocancel1(u.b, u.c, u.m, derivation)
+ [[u.alpha * answ.ans + u.beta, answ.nosol]]
+ (n > 0) and (b0? or degree(u.b) < n) =>
+ uansw := SPDEnocancel2(u.b,u.c,u.m,n,leadingCoefficient dt,derivation)
+ uansw case ans=> [[u.alpha * uansw.ans.ans + u.beta, uansw.ans.nosol]]
+ [[uansw.eq.b, uansw.eq.c, uansw.eq.m,
+ u.alpha * uansw.eq.alpha, u.alpha * uansw.eq.beta + u.beta]]
+ b0? and baseCase? =>
+ degree(u.c) >= u.m => [[0, true]]
+ [[u.alpha * integrate(u.c) + u.beta, false]]
+ [u::SPE]
+
+-- cancellation at infinity is possible, A is assumed nonzero
+-- if u.b = 0 then u.a = 1 already, but no degree check is done
+-- returns "failed" if a p' + b p = c has no soln of degree at most d,
+-- otherwise [B, C, m, \alpha, \beta] such that any soln p of degree at
+-- most d of a p' + b p = c must be of the form p = \alpha h + \beta,
+-- where h' + B h = C and h has degree at most m
+ SPDE(aa, bb, cc, d, derivation) ==
+ zero? cc => [0, 0, 0, 0, 0]
+ d < 0 => "failed"
+ (u := cc exquo (g := gcd(aa, bb))) case "failed" => "failed"
+ aa := (aa exquo g)::UP
+ bb := (bb exquo g)::UP
+ cc := u::UP
+ (ra := retractIfCan(aa)@Union(F, "failed")) case F =>
+ a1 := inv(ra::F)
+ [a1 * bb, a1 * cc, d, 1, 0]
+ bc := extendedEuclidean(bb, aa, cc)::Record(coef1:UP, coef2:UP)
+ qr := divide(bc.coef1, aa)
+ r := qr.remainder -- z = bc.coef2 + b * qr.quotient
+ (v := SPDE(aa, bb + derivation aa,
+ bc.coef2 + bb * qr.quotient - derivation r,
+ d - degree(aa)::Z, derivation)) case "failed" => "failed"
+ [v.b, v.c, v.m, aa * v.alpha, aa * v.beta + r]
+
+-- solves q' + b q = c with deg(q) <= d
+-- case (B <> 0) and (D = d/dt or degree(B) > max(0, degree(Dt) - 1))
+-- this implies no cancellation at infinity, BQ term dominates
+-- returns [Q, flag] such that Q is a solution if flag is false,
+-- a partial solution otherwise.
+ SPDEnocancel1(bb, cc, d, derivation) ==
+ q:UP := 0
+ db := (degree bb)::Z
+ lb := leadingCoefficient bb
+ while cc ^= 0 repeat
+ d < 0 or (n := (degree cc)::Z - db) < 0 or n > d => return [q, true]
+ r := monomial((leadingCoefficient cc) / lb, n::N)
+ cc := cc - bb * r - derivation r
+ d := n - 1
+ q := q + r
+ [q, false]
+
+-- case (t is a nonlinear monomial) and (B = 0 or degree(B) < degree(Dt) - 1)
+-- this implies no cancellation at infinity, DQ term dominates or degree(Q) = 0
+-- dtm1 = degree(Dt) - 1
+ SPDEnocancel2(bb, cc, d, dtm1, lt, derivation) ==
+ q:UP := 0
+ while cc ^= 0 repeat
+ d < 0 or (n := (degree cc)::Z - dtm1) < 0 or n > d => return [[q, true]]
+ if n > 0 then
+ r := monomial((leadingCoefficient cc) / (n * lt), n::N)
+ cc := cc - bb * r - derivation r
+ d := n - 1
+ q := q + r
+ else -- n = 0 so solution must have degree 0
+ db:N := (zero? bb => 0; degree bb);
+ db ^= degree(cc) => return [[q, true]]
+ zero? db => return [[bb, cc, 0, 1, q]]
+ r := leadingCoefficient(cc) / leadingCoefficient(bb)
+ cc := cc - r * bb - derivation(r::UP)
+ d := - 1
+ q := q + r::UP
+ [[q, false]]
+
+ monomRDE(f, g, derivation) ==
+ gg := gcd(d := normalDenom(f,derivation), e := normalDenom(g,derivation))
+ tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP
+ (u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed"
+ [aa, aa * f - (d * derivation tt)::RF, u::UP * e * g, tt]
+
+-- solve y' + f y = g for y in RF
+-- assumes that f is weakly normalized (no finite cancellation)
+-- base case: F' = 0
+ baseRDE(f, g) ==
+ (u := monomRDE(f, g, differentiate)) case "failed" => [0, true]
+ n := getBound(u.a,bb := retract(u.b)@UP,degree(cc := retract(u.c)@UP)::Z)
+ v := polyRDE(u.a, bb, cc, n, differentiate).ans
+ [v.ans / u.t, v.nosol]
+
+-- return an a bound on the degree of a solution of A P'+ B P = C,A ^= 0
+-- cancellation at infinity is possible
+-- base case: F' = 0
+ getBound(a, b, dc) ==
+ da := (degree a)::Z
+ zero? b => max(0, dc - da + 1)
+ db := (degree b)::Z
+ da > (db + 1) => max(0, dc - da + 1)
+ da < (db + 1) => dc - db
+ (n := retractIfCan(- leadingCoefficient(b) / leadingCoefficient(a)
+ )@Union(Z, "failed")) case Z => max(n::Z, dc - db)
+ dc - db
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+-- SPAD files for the integration world should be compiled in the
+-- following order:
+--
+-- intaux RDERF intrf rdeef intef irexpand integrat
+
+<<package RDETR TranscendentalRischDE>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}