diff options
author | dos-reis <gdr@axiomatics.org> | 2008-11-21 04:54:55 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-11-21 04:54:55 +0000 |
commit | 49727ef97a25730307fdb9622be726e92a41a875 (patch) | |
tree | 5c6fbb86ff4e49c7ed0d510e76f42d7352005c88 /src/algebra/poly.spad.pamphlet | |
parent | 0b97ae7365e5ba3d3e078147124e096f7cccde4b (diff) | |
download | open-axiom-49727ef97a25730307fdb9622be726e92a41a875.tar.gz |
* algebra/alql.spad.pamphlet (Database): Now CoercibleFrom List S.
* algebra/asp.spad.pamphlet (Asp20): Now CoercibleFrom MAT FEXPR.
(Asp6): Now CoercibleFrom Vector FEXPR.
* algebra/catdef.spad.pamphlet (Algebra): Extend CoercibleFrom R.
(Ring): Extend CoercibleFrom Integer.
* algebra/formula.spad.pamphlet (ScriptFormulaFormat): Now
CoercibleFrom E.
* algebra/fortran.spad.pamphlet (FortranCode): Remove redundant
signature.
* algebra/fs2ups.spad.pamphlet
(FunctionSpaceToUnivariatePowerSeries): Tidy parameter.
* algebra/laurent.spad.pamphlet
(UnivariateLaurentSeriesConstructorCategory): Extend CoercibleFrom
UTS.
* algebra/manip.spad.pamphlet (PolynomialRoots): Tidy parameter.
* algebra/modmon.spad.pamphlet (ModMonic): Now CoercibleFrom Rep.
* algebra/ore.spad.pamphlet (UnivariateSkewPolynomial): Now
CoercibleFrom Variable x.
Diffstat (limited to 'src/algebra/poly.spad.pamphlet')
-rw-r--r-- | src/algebra/poly.spad.pamphlet | 4 |
1 files changed, 1 insertions, 3 deletions
diff --git a/src/algebra/poly.spad.pamphlet b/src/algebra/poly.spad.pamphlet index 9cdc6ad8..ff21510e 100644 --- a/src/algebra/poly.spad.pamphlet +++ b/src/algebra/poly.spad.pamphlet @@ -785,9 +785,7 @@ SparseUnivariatePolynomialFunctions2(R:Ring, S:Ring): with ++ Note: if the coefficient ring is a field, then this domain forms a euclidean domain. UnivariatePolynomial(x:Symbol, R:Ring): - UnivariatePolynomialCategory(R) with - coerce: Variable(x) -> % - ++ coerce(x) converts the variable x to a univariate polynomial. + Join(UnivariatePolynomialCategory(R),CoercibleFrom Variable x) with fmecg: (%,NonNegativeInteger,R,%) -> % ++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2 == SparseUnivariatePolynomial(R) add |