aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/poly.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-11-21 04:54:55 +0000
committerdos-reis <gdr@axiomatics.org>2008-11-21 04:54:55 +0000
commit49727ef97a25730307fdb9622be726e92a41a875 (patch)
tree5c6fbb86ff4e49c7ed0d510e76f42d7352005c88 /src/algebra/poly.spad.pamphlet
parent0b97ae7365e5ba3d3e078147124e096f7cccde4b (diff)
downloadopen-axiom-49727ef97a25730307fdb9622be726e92a41a875.tar.gz
* algebra/alql.spad.pamphlet (Database): Now CoercibleFrom List S.
* algebra/asp.spad.pamphlet (Asp20): Now CoercibleFrom MAT FEXPR. (Asp6): Now CoercibleFrom Vector FEXPR. * algebra/catdef.spad.pamphlet (Algebra): Extend CoercibleFrom R. (Ring): Extend CoercibleFrom Integer. * algebra/formula.spad.pamphlet (ScriptFormulaFormat): Now CoercibleFrom E. * algebra/fortran.spad.pamphlet (FortranCode): Remove redundant signature. * algebra/fs2ups.spad.pamphlet (FunctionSpaceToUnivariatePowerSeries): Tidy parameter. * algebra/laurent.spad.pamphlet (UnivariateLaurentSeriesConstructorCategory): Extend CoercibleFrom UTS. * algebra/manip.spad.pamphlet (PolynomialRoots): Tidy parameter. * algebra/modmon.spad.pamphlet (ModMonic): Now CoercibleFrom Rep. * algebra/ore.spad.pamphlet (UnivariateSkewPolynomial): Now CoercibleFrom Variable x.
Diffstat (limited to 'src/algebra/poly.spad.pamphlet')
-rw-r--r--src/algebra/poly.spad.pamphlet4
1 files changed, 1 insertions, 3 deletions
diff --git a/src/algebra/poly.spad.pamphlet b/src/algebra/poly.spad.pamphlet
index 9cdc6ad8..ff21510e 100644
--- a/src/algebra/poly.spad.pamphlet
+++ b/src/algebra/poly.spad.pamphlet
@@ -785,9 +785,7 @@ SparseUnivariatePolynomialFunctions2(R:Ring, S:Ring): with
++ Note: if the coefficient ring is a field, then this domain forms a euclidean domain.
UnivariatePolynomial(x:Symbol, R:Ring):
- UnivariatePolynomialCategory(R) with
- coerce: Variable(x) -> %
- ++ coerce(x) converts the variable x to a univariate polynomial.
+ Join(UnivariatePolynomialCategory(R),CoercibleFrom Variable x) with
fmecg: (%,NonNegativeInteger,R,%) -> %
++ fmecg(p1,e,r,p2) finds X : p1 - r * X**e * p2
== SparseUnivariatePolynomial(R) add