diff options
author | dos-reis <gdr@axiomatics.org> | 2011-03-12 22:56:37 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2011-03-12 22:56:37 +0000 |
commit | 6c75a87d8ee00d48a0f5703aa9c86591078a50d3 (patch) | |
tree | 28ff587bbc4d759dd0e3f96b156700ff01ba8c53 /src/algebra/numtheor.spad.pamphlet | |
parent | a2e3e641bdbcb6e77bbb572aea25a748a967abca (diff) | |
download | open-axiom-6c75a87d8ee00d48a0f5703aa9c86591078a50d3.tar.gz |
* src/algebra/: Systematically use not one? when comparing for
equality with 1.
Diffstat (limited to 'src/algebra/numtheor.spad.pamphlet')
-rw-r--r-- | src/algebra/numtheor.spad.pamphlet | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/src/algebra/numtheor.spad.pamphlet b/src/algebra/numtheor.spad.pamphlet index 98a30591..0e40d82e 100644 --- a/src/algebra/numtheor.spad.pamphlet +++ b/src/algebra/numtheor.spad.pamphlet @@ -131,7 +131,7 @@ Using the half extended Euclidean algorithm we compute 1/a mod b. r:I := a-q*b (a,b):=(b,r) (c1,d1):=(d1,c1-q*d1) - a ~= 1 => error("moduli are not relatively prime") + not one? a => error("moduli are not relatively prime") positiveRemainder(c1,borg) @ @@ -155,11 +155,11 @@ inverse(a,b) == print [a, "=", q, "*(", b, ")+", r] (a,b):=(b,r) (c1,d1):=(d1,c1-q*d1) - a ~= 1 => error("moduli are not relatively prime") + not one? a => error("moduli are not relatively prime") positiveRemainder(c1,borg) -if ((inverse(26,15)*26)::IntegerMod(15) ~= 1) then print "DALY BUG" -if ((inverse(15,26)*15)::IntegerMod(26) ~= 1) then print "DALY BUG" +if not one?((inverse(26,15)*26)::IntegerMod(15)) then print "DALY BUG" +if not one?((inverse(15,26)*15)::IntegerMod(26)) then print "DALY BUG" @ \subsection{The Chinese Remainder Algorithm} @@ -566,7 +566,7 @@ PolynomialNumberTheoryFunctions(): Exports == Implementation where MonicQuotient: (SUP(I),SUP(I)) -> SUP(I) MonicQuotient (a,b) == - leadingCoefficient(b) ~= 1 => error "divisor must be monic" + not one? leadingCoefficient(b) => error "divisor must be monic" b = 1 => a da := degree a db := degree b -- assertion: degree b > 0 |