aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/numeric.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/numeric.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/numeric.spad.pamphlet')
-rw-r--r--src/algebra/numeric.spad.pamphlet520
1 files changed, 520 insertions, 0 deletions
diff --git a/src/algebra/numeric.spad.pamphlet b/src/algebra/numeric.spad.pamphlet
new file mode 100644
index 00000000..cb575e80
--- /dev/null
+++ b/src/algebra/numeric.spad.pamphlet
@@ -0,0 +1,520 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra numeric.spad}
+\author{Manuel Bronstein, Mike Dewar}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{package NUMERIC Numeric}
+<<package NUMERIC Numeric>>=
+)abbrev package NUMERIC Numeric
+++ Author: Manuel Bronstein
+++ Date Created: 21 Feb 1990
+++ Date Last Updated: 17 August 1995, Mike Dewar
+++ 24 January 1997, Miked Dewar (added partial operators)
+++ Basic Operations: numeric, complexNumeric, numericIfCan, complexNumericIfCan
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords:
+++ References:
+++ Description: Numeric provides real and complex numerical evaluation
+++ functions for various symbolic types.
+
+Numeric(S:ConvertibleTo Float): with
+ numeric: S -> Float
+ ++ numeric(x) returns a real approximation of x.
+ numeric: (S, PositiveInteger) -> Float
+ ++ numeric(x, n) returns a real approximation of x up to n decimal
+ ++ places.
+ complexNumeric: S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x up
+ ++ to n decimal places.
+ if S has CommutativeRing then
+ complexNumeric: Complex S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Complex S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x up
+ ++ to n decimal places.
+ complexNumeric: Polynomial Complex S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Polynomial Complex S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x up
+ ++ to n decimal places.
+ if S has Ring then
+ numeric: Polynomial S -> Float
+ ++ numeric(x) returns a real approximation of x.
+ numeric: (Polynomial S, PositiveInteger) -> Float
+ ++ numeric(x,n) returns a real approximation of x up to n decimal
+ ++ places.
+ complexNumeric: Polynomial S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Polynomial S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x
+ ++ up to n decimal places.
+ if S has IntegralDomain then
+ numeric: Fraction Polynomial S -> Float
+ ++ numeric(x) returns a real approximation of x.
+ numeric: (Fraction Polynomial S, PositiveInteger) -> Float
+ ++ numeric(x,n) returns a real approximation of x up to n decimal
+ ++ places.
+ complexNumeric: Fraction Polynomial S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Fraction Polynomial S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x
+ complexNumeric: Fraction Polynomial Complex S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Fraction Polynomial Complex S, PositiveInteger) ->
+ Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x
+ ++ up to n decimal places.
+ if S has OrderedSet then
+ numeric: Expression S -> Float
+ ++ numeric(x) returns a real approximation of x.
+ numeric: (Expression S, PositiveInteger) -> Float
+ ++ numeric(x, n) returns a real approximation of x up to n
+ ++ decimal places.
+ complexNumeric: Expression S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Expression S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x
+ ++ up to n decimal places.
+ complexNumeric: Expression Complex S -> Complex Float
+ ++ complexNumeric(x) returns a complex approximation of x.
+ complexNumeric: (Expression Complex S, PositiveInteger) -> Complex Float
+ ++ complexNumeric(x, n) returns a complex approximation of x
+ ++ up to n decimal places.
+ if S has CommutativeRing then
+ complexNumericIfCan: Polynomial Complex S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not constant.
+ complexNumericIfCan: (Polynomial Complex S, PositiveInteger) -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x up
+ ++ to n decimal places, or "failed" if \axiom{x} is not a constant.
+ if S has Ring then
+ numericIfCan: Polynomial S -> Union(Float,"failed")
+ ++ numericIfCan(x) returns a real approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ numericIfCan: (Polynomial S, PositiveInteger) -> Union(Float,"failed")
+ ++ numericIfCan(x,n) returns a real approximation of x up to n decimal
+ ++ places, or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: Polynomial S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: (Polynomial S, PositiveInteger) -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x
+ ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
+ if S has IntegralDomain then
+ numericIfCan: Fraction Polynomial S -> Union(Float,"failed")
+ ++ numericIfCan(x) returns a real approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ numericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Float,"failed")
+ ++ numericIfCan(x,n) returns a real approximation of x up to n decimal
+ ++ places, or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: Fraction Polynomial S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: Fraction Polynomial Complex S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: (Fraction Polynomial Complex S, PositiveInteger) ->
+ Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x
+ ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
+ if S has OrderedSet then
+ numericIfCan: Expression S -> Union(Float,"failed")
+ ++ numericIfCan(x) returns a real approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ numericIfCan: (Expression S, PositiveInteger) -> Union(Float,"failed")
+ ++ numericIfCan(x, n) returns a real approximation of x up to n
+ ++ decimal places, or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: Expression S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: (Expression S, PositiveInteger) ->
+ Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x
+ ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: Expression Complex S -> Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x) returns a complex approximation of x,
+ ++ or "failed" if \axiom{x} is not a constant.
+ complexNumericIfCan: (Expression Complex S, PositiveInteger) ->
+ Union(Complex Float,"failed")
+ ++ complexNumericIfCan(x, n) returns a complex approximation of x
+ ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
+ == add
+
+ if S has CommutativeRing then
+ complexNumericIfCan(p:Polynomial Complex S) ==
+ p' : Union(Complex(S),"failed") := retractIfCan p
+ p' case "failed" => "failed"
+ complexNumeric(p')
+
+ complexNumericIfCan(p:Polynomial Complex S,n:PositiveInteger) ==
+ p' : Union(Complex(S),"failed") := retractIfCan p
+ p' case "failed" => "failed"
+ complexNumeric(p',n)
+
+ if S has Ring then
+ numericIfCan(p:Polynomial S) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" => "failed"
+ numeric(p')
+
+ complexNumericIfCan(p:Polynomial S) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" => "failed"
+ complexNumeric(p')
+
+ complexNumericIfCan(p:Polynomial S, n:PositiveInteger) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" => "failed"
+ complexNumeric(p', n)
+
+ numericIfCan(p:Polynomial S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := numericIfCan p
+ digits(old)$Float
+ ans
+
+ if S has IntegralDomain then
+ numericIfCan(f:Fraction Polynomial S)==
+ num := numericIfCan(numer(f))
+ num case "failed" => "failed"
+ den := numericIfCan(denom f)
+ den case "failed" => "failed"
+ num/den
+
+ complexNumericIfCan(f:Fraction Polynomial S) ==
+ num := complexNumericIfCan(numer f)
+ num case "failed" => "failed"
+ den := complexNumericIfCan(denom f)
+ den case "failed" => "failed"
+ num/den
+
+ complexNumericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
+ num := complexNumericIfCan(numer f, n)
+ num case "failed" => "failed"
+ den := complexNumericIfCan(denom f, n)
+ den case "failed" => "failed"
+ num/den
+
+ numericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := numericIfCan f
+ digits(old)$Float
+ ans
+
+ complexNumericIfCan(f:Fraction Polynomial Complex S) ==
+ num := complexNumericIfCan(numer f)
+ num case "failed" => "failed"
+ den := complexNumericIfCan(denom f)
+ den case "failed" => "failed"
+ num/den
+
+ complexNumericIfCan(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
+ num := complexNumericIfCan(numer f, n)
+ num case "failed" => "failed"
+ den := complexNumericIfCan(denom f, n)
+ den case "failed" => "failed"
+ num/den
+
+ if S has OrderedSet then
+ numericIfCan(x:Expression S) ==
+ retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
+
+ --s2cs(u:S):Complex(S) == complex(u,0)
+
+ complexNumericIfCan(x:Expression S) ==
+ complexNumericIfCan map(coerce, x)$ExpressionFunctions2(S,Complex S)
+
+ numericIfCan(x:Expression S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
+ ans : Union(Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans
+
+ complexNumericIfCan(x:Expression S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Complex S := map(coerce, x)$ExpressionFunctions2(S, Complex S)
+ ans : Union(Complex Float,"failed") := complexNumericIfCan(x')
+ digits(old)$Float
+ ans
+
+ if S has RealConstant then
+ complexNumericIfCan(x:Expression Complex S) ==
+ retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float))
+
+ complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Complex Float :=
+ map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
+ ans : Union(Complex Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans
+ else
+ convert(x:Complex S):Complex(Float)==map(convert,x)$ComplexFunctions2(S,Float)
+
+ complexNumericIfCan(x:Expression Complex S) ==
+ retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float))
+
+ complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Complex Float :=
+ map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
+ ans : Union(Complex Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans
+ numeric(s:S) == convert(s)@Float
+
+ if S has ConvertibleTo Complex Float then
+ complexNumeric(s:S) == convert(s)@Complex(Float)
+
+ complexNumeric(s:S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := complexNumeric s
+ digits(old)$Float
+ ans
+
+ else
+ complexNumeric(s:S) == convert(s)@Float :: Complex(Float)
+
+ complexNumeric(s:S,n:PositiveInteger) ==
+ numeric(s, n)::Complex(Float)
+
+ if S has CommutativeRing then
+ complexNumeric(p:Polynomial Complex S) ==
+ p' : Union(Complex(S),"failed") := retractIfCan p
+ p' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant polynomial"
+ complexNumeric(p')
+
+ complexNumeric(p:Polynomial Complex S,n:PositiveInteger) ==
+ p' : Union(Complex(S),"failed") := retractIfCan p
+ p' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant polynomial"
+ complexNumeric(p',n)
+
+ if S has RealConstant then
+ complexNumeric(s:Complex S) == convert(s)$Complex(S)
+
+ complexNumeric(s:Complex S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := complexNumeric s
+ digits(old)$Float
+ ans
+
+ else if Complex(S) has ConvertibleTo(Complex Float) then
+ complexNumeric(s:Complex S) == convert(s)@Complex(Float)
+
+ complexNumeric(s:Complex S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := complexNumeric s
+ digits(old)$Float
+ ans
+
+ else
+ complexNumeric(s:Complex S) ==
+ s' : Union(S,"failed") := retractIfCan s
+ s' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant object"
+ complexNumeric(s')
+
+ complexNumeric(s:Complex S, n:PositiveInteger) ==
+ s' : Union(S,"failed") := retractIfCan s
+ s' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant object"
+ old := digits(n)$Float
+ ans := complexNumeric s'
+ digits(old)$Float
+ ans
+
+ numeric(s:S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := numeric s
+ digits(old)$Float
+ ans
+
+ if S has Ring then
+ numeric(p:Polynomial S) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" => error
+ "Can only compute the numerical value of a constant, real-valued polynomial"
+ numeric(p')
+
+ complexNumeric(p:Polynomial S) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant polynomial"
+ complexNumeric(p')
+
+ complexNumeric(p:Polynomial S, n:PositiveInteger) ==
+ p' : Union(S,"failed") := retractIfCan p
+ p' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant polynomial"
+ complexNumeric(p', n)
+
+ numeric(p:Polynomial S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := numeric p
+ digits(old)$Float
+ ans
+
+ if S has IntegralDomain then
+ numeric(f:Fraction Polynomial S)==
+ numeric(numer(f)) / numeric(denom f)
+
+ complexNumeric(f:Fraction Polynomial S) ==
+ complexNumeric(numer f)/complexNumeric(denom f)
+
+ complexNumeric(f:Fraction Polynomial S, n:PositiveInteger) ==
+ complexNumeric(numer f, n)/complexNumeric(denom f, n)
+
+ numeric(f:Fraction Polynomial S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ ans := numeric f
+ digits(old)$Float
+ ans
+
+ complexNumeric(f:Fraction Polynomial Complex S) ==
+ complexNumeric(numer f)/complexNumeric(denom f)
+
+ complexNumeric(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
+ complexNumeric(numer f, n)/complexNumeric(denom f, n)
+
+ if S has OrderedSet then
+ numeric(x:Expression S) ==
+ x' : Union(Float,"failed") :=
+ retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
+ x' case "failed" => error
+ "Can only compute the numerical value of a constant, real-valued Expression"
+ x'
+
+ complexNumeric(x:Expression S) ==
+ x' : Union(Complex Float,"failed") := retractIfCan(
+ map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float))
+ x' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant expression"
+ x'
+
+ numeric(x:Expression S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
+ ans : Union(Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans case "failed" => error
+ "Can only compute the numerical value of a constant, real-valued Expression"
+ ans
+
+ complexNumeric(x:Expression S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Complex Float :=
+ map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float)
+ ans : Union(Complex Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans case "failed" =>
+ error "Cannot compute the numerical value of a non-constant expression"
+ ans
+
+ complexNumeric(x:Expression Complex S) ==
+ x' : Union(Complex Float,"failed") := retractIfCan(
+ map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float))
+ x' case "failed" =>
+ error "Cannot compute the numerical value of a non-constant expression"
+ x'
+
+ complexNumeric(x:Expression Complex S, n:PositiveInteger) ==
+ old := digits(n)$Float
+ x' : Expression Complex Float :=
+ map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float)
+ ans : Union(Complex Float,"failed") := retractIfCan x'
+ digits(old)$Float
+ ans case "failed" =>
+ error "Cannot compute the numerical value of a non-constant expression"
+ ans
+
+@
+\section{package DRAWHACK DrawNumericHack}
+<<package DRAWHACK DrawNumericHack>>=
+)abbrev package DRAWHACK DrawNumericHack
+++ Author: Manuel Bronstein
+++ Date Created: 21 Feb 1990
+++ Date Last Updated: 21 Feb 1990
+++ Basic Operations: coerce
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords:
+++ References:
+++ Description: Hack for the draw interface. DrawNumericHack provides
+++ a "coercion" from something of the form \spad{x = a..b} where \spad{a}
+++ and b are
+++ formal expressions to a binding of the form \spad{x = c..d} where c and d
+++ are the numerical values of \spad{a} and b. This "coercion" fails if
+++ \spad{a} and b contains symbolic variables, but is meant for expressions
+++ involving %pi.
+++ NOTE: This is meant for internal use only.
+
+DrawNumericHack(R:Join(OrderedSet,IntegralDomain,ConvertibleTo Float)):
+ with coerce: SegmentBinding Expression R -> SegmentBinding Float
+ ++ coerce(x = a..b) returns \spad{x = c..d} where c and d are the
+ ++ numerical values of \spad{a} and b.
+ == add
+ coerce s ==
+ map(numeric$Numeric(R),s)$SegmentBindingFunctions2(Expression R, Float)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<package NUMERIC Numeric>>
+<<package DRAWHACK DrawNumericHack>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}