diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/matcat.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/matcat.spad.pamphlet')
-rw-r--r-- | src/algebra/matcat.spad.pamphlet | 904 |
1 files changed, 904 insertions, 0 deletions
diff --git a/src/algebra/matcat.spad.pamphlet b/src/algebra/matcat.spad.pamphlet new file mode 100644 index 00000000..f7bc1ef8 --- /dev/null +++ b/src/algebra/matcat.spad.pamphlet @@ -0,0 +1,904 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra matcat.spad} +\author{Johannes Grabmeier, Oswald Gschnitzer, Clifton J. Williamson} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{category MATCAT MatrixCategory} +<<category MATCAT MatrixCategory>>= +)abbrev category MATCAT MatrixCategory +++ Authors: Grabmeier, Gschnitzer, Williamson +++ Date Created: 1987 +++ Date Last Updated: July 1990 +++ Basic Operations: +++ Related Domains: Matrix(R) +++ Also See: +++ AMS Classifications: +++ Keywords: matrix, linear algebra +++ Examples: +++ References: +++ Description: +++ \spadtype{MatrixCategory} is a general matrix category which allows +++ different representations and indexing schemes. Rows and +++ columns may be extracted with rows returned as objects of +++ type Row and colums returned as objects of type Col. +++ A domain belonging to this category will be shallowly mutable. +++ The index of the 'first' row may be obtained by calling the +++ function \spadfun{minRowIndex}. The index of the 'first' column may +++ be obtained by calling the function \spadfun{minColIndex}. The index of +++ the first element of a Row is the same as the index of the +++ first column in a matrix and vice versa. +MatrixCategory(R,Row,Col): Category == Definition where + R : Ring + Row : FiniteLinearAggregate R + Col : FiniteLinearAggregate R + + Definition ==> TwoDimensionalArrayCategory(R,Row,Col) with + shallowlyMutable + ++ One may destructively alter matrices + + finiteAggregate + ++ matrices are finite + +--% Predicates + + square? : % -> Boolean + ++ \spad{square?(m)} returns true if m is a square matrix + ++ (i.e. if m has the same number of rows as columns) and false otherwise. + diagonal?: % -> Boolean + ++ \spad{diagonal?(m)} returns true if the matrix m is square and + ++ diagonal (i.e. all entries of m not on the diagonal are zero) and + ++ false otherwise. + symmetric?: % -> Boolean + ++ \spad{symmetric?(m)} returns true if the matrix m is square and + ++ symmetric (i.e. \spad{m[i,j] = m[j,i]} for all i and j) and false + ++ otherwise. + antisymmetric?: % -> Boolean + ++ \spad{antisymmetric?(m)} returns true if the matrix m is square and + ++ antisymmetric (i.e. \spad{m[i,j] = -m[j,i]} for all i and j) and false + ++ otherwise. + +--% Creation + + zero: (NonNegativeInteger,NonNegativeInteger) -> % + ++ \spad{zero(m,n)} returns an m-by-n zero matrix. + matrix: List List R -> % + ++ \spad{matrix(l)} converts the list of lists l to a matrix, where the + ++ list of lists is viewed as a list of the rows of the matrix. + scalarMatrix: (NonNegativeInteger,R) -> % + ++ \spad{scalarMatrix(n,r)} returns an n-by-n matrix with r's on the + ++ diagonal and zeroes elsewhere. + diagonalMatrix: List R -> % + ++ \spad{diagonalMatrix(l)} returns a diagonal matrix with the elements + ++ of l on the diagonal. + diagonalMatrix: List % -> % + ++ \spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix + ++ M with block matrices {\em m1},...,{\em mk} down the diagonal, + ++ with 0 block matrices elsewhere. + ++ More precisly: if \spad{ri := nrows mi}, \spad{ci := ncols mi}, + ++ then m is an (r1+..+rk) by (c1+..+ck) - matrix with entries + ++ \spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if + ++ \spad{(r1+..+r(l-1)) < i <= r1+..+rl} and + ++ \spad{(c1+..+c(l-1)) < i <= c1+..+cl}, + ++ \spad{m.i.j} = 0 otherwise. + coerce: Col -> % + ++ \spad{coerce(col)} converts the column col to a column matrix. + transpose: Row -> % + ++ \spad{transpose(r)} converts the row r to a row matrix. + +--% Creation of new matrices from old + + transpose: % -> % + ++ \spad{transpose(m)} returns the transpose of the matrix m. + squareTop: % -> % + ++ \spad{squareTop(m)} returns an n-by-n matrix consisting of the first + ++ n rows of the m-by-n matrix m. Error: if + ++ \spad{m < n}. + horizConcat: (%,%) -> % + ++ \spad{horizConcat(x,y)} horizontally concatenates two matrices with + ++ an equal number of rows. The entries of y appear to the right + ++ of the entries of x. Error: if the matrices + ++ do not have the same number of rows. + vertConcat: (%,%) -> % + ++ \spad{vertConcat(x,y)} vertically concatenates two matrices with an + ++ equal number of columns. The entries of y appear below + ++ of the entries of x. Error: if the matrices + ++ do not have the same number of columns. + +--% Part extractions/assignments + + listOfLists: % -> List List R + ++ \spad{listOfLists(m)} returns the rows of the matrix m as a list + ++ of lists. + elt: (%,List Integer,List Integer) -> % + ++ \spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting + ++ of elements of x, where \spad{m = # rowList} and \spad{n = # colList}. + ++ If \spad{rowList = [i<1>,i<2>,...,i<m>]} and \spad{colList = + ++ [j<1>,j<2>,...,j<n>]}, then the \spad{(k,l)}th entry of + ++ \spad{elt(x,rowList,colList)} is \spad{x(i<k>,j<l>)}. + setelt: (%,List Integer,List Integer, %) -> % + ++ \spad{setelt(x,rowList,colList,y)} destructively alters the matrix x. + ++ If y is \spad{m}-by-\spad{n}, \spad{rowList = [i<1>,i<2>,...,i<m>]} + ++ and \spad{colList = [j<1>,j<2>,...,j<n>]}, then \spad{x(i<k>,j<l>)} + ++ is set to \spad{y(k,l)} for \spad{k = 1,...,m} and \spad{l = 1,...,n}. + swapRows_!: (%,Integer,Integer) -> % + ++ \spad{swapRows!(m,i,j)} interchanges the \spad{i}th and \spad{j}th + ++ rows of m. This destructively alters the matrix. + swapColumns_!: (%,Integer,Integer) -> % + ++ \spad{swapColumns!(m,i,j)} interchanges the \spad{i}th and \spad{j}th + ++ columns of m. This destructively alters the matrix. + subMatrix: (%,Integer,Integer,Integer,Integer) -> % + ++ \spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix + ++ \spad{[x(i,j)]} where the index i ranges from \spad{i1} to \spad{i2} + ++ and the index j ranges from \spad{j1} to \spad{j2}. + setsubMatrix_!: (%,Integer,Integer,%) -> % + ++ \spad{setsubMatrix(x,i1,j1,y)} destructively alters the + ++ matrix x. Here \spad{x(i,j)} is set to \spad{y(i-i1+1,j-j1+1)} for + ++ \spad{i = i1,...,i1-1+nrows y} and \spad{j = j1,...,j1-1+ncols y}. + +--% Arithmetic + + "+": (%,%) -> % + ++ \spad{x + y} is the sum of the matrices x and y. + ++ Error: if the dimensions are incompatible. + "-": (%,%) -> % + ++ \spad{x - y} is the difference of the matrices x and y. + ++ Error: if the dimensions are incompatible. + "-": % -> % + ++ \spad{-x} returns the negative of the matrix x. + "*": (%,%) -> % + ++ \spad{x * y} is the product of the matrices x and y. + ++ Error: if the dimensions are incompatible. + "*": (R,%) -> % + ++ \spad{r*x} is the left scalar multiple of the scalar r and the + ++ matrix x. + "*": (%,R) -> % + ++ \spad{x * r} is the right scalar multiple of the scalar r and the + ++ matrix x. + "*": (Integer,%) -> % + ++ \spad{n * x} is an integer multiple. + "*": (%,Col) -> Col + ++ \spad{x * c} is the product of the matrix x and the column vector c. + ++ Error: if the dimensions are incompatible. + "*": (Row,%) -> Row + ++ \spad{r * x} is the product of the row vector r and the matrix x. + ++ Error: if the dimensions are incompatible. + "**": (%,NonNegativeInteger) -> % + ++ \spad{x ** n} computes a non-negative integral power of the matrix x. + ++ Error: if the matrix is not square. + if R has IntegralDomain then + "exquo": (%,R) -> Union(%,"failed") + ++ \spad{exquo(m,r)} computes the exact quotient of the elements + ++ of m by r, returning \axiom{"failed"} if this is not possible. + if R has Field then + "/": (%,R) -> % + ++ \spad{m/r} divides the elements of m by r. Error: if \spad{r = 0}. + +--% Linear algebra + + if R has EuclideanDomain then + rowEchelon: % -> % + ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. + if R has IntegralDomain then + rank: % -> NonNegativeInteger + ++ \spad{rank(m)} returns the rank of the matrix m. + nullity: % -> NonNegativeInteger + ++ \spad{nullity(m)} returns the nullity of the matrix m. This is + ++ the dimension of the null space of the matrix m. + nullSpace: % -> List Col + ++ \spad{nullSpace(m)} returns a basis for the null space of + ++ the matrix m. + if R has commutative("*") then + determinant: % -> R + ++ \spad{determinant(m)} returns the determinant of the matrix m. + ++ Error: if the matrix is not square. + minordet: % -> R + ++ \spad{minordet(m)} computes the determinant of the matrix m using + ++ minors. Error: if the matrix is not square. + if R has Field then + inverse: % -> Union(%,"failed") + ++ \spad{inverse(m)} returns the inverse of the matrix m. + ++ If the matrix is not invertible, "failed" is returned. + ++ Error: if the matrix is not square. + "**": (%,Integer) -> % + ++ \spad{m**n} computes an integral power of the matrix m. + ++ Error: if matrix is not square or if the matrix + ++ is square but not invertible. + + add + minr ==> minRowIndex + maxr ==> maxRowIndex + minc ==> minColIndex + maxc ==> maxColIndex + mini ==> minIndex + maxi ==> maxIndex + +--% Predicates + + square? x == nrows x = ncols x + + diagonal? x == + not square? x => false + for i in minr x .. maxr x repeat + for j in minc x .. maxc x | (j - minc x) ^= (i - minr x) repeat + not zero? qelt(x, i, j) => return false + true + + symmetric? x == + (nRows := nrows x) ^= ncols x => false + mr := minRowIndex x; mc := minColIndex x + for i in 0..(nRows - 1) repeat + for j in (i + 1)..(nRows - 1) repeat + qelt(x,mr + i,mc + j) ^= qelt(x,mr + j,mc + i) => return false + true + + antisymmetric? x == + (nRows := nrows x) ^= ncols x => false + mr := minRowIndex x; mc := minColIndex x + for i in 0..(nRows - 1) repeat + for j in i..(nRows - 1) repeat + qelt(x,mr + i,mc + j) ^= -qelt(x,mr + j,mc + i) => + return false + true + +--% Creation of matrices + + zero(rows,cols) == new(rows,cols,0) + + matrix(l: List List R) == + null l => new(0,0,0) + -- error check: this is a top level function + rows : NonNegativeInteger := 1; cols := # first l + cols = 0 => error "matrices with zero columns are not supported" + for ll in rest l repeat + cols ^= # ll => error "matrix: rows of different lengths" + rows := rows + 1 + ans := new(rows,cols,0) + for i in minr(ans)..maxr(ans) for ll in l repeat + for j in minc(ans)..maxc(ans) for r in ll repeat + qsetelt_!(ans,i,j,r) + ans + + scalarMatrix(n,r) == + ans := zero(n,n) + for i in minr(ans)..maxr(ans) for j in minc(ans)..maxc(ans) repeat + qsetelt_!(ans,i,j,r) + ans + + diagonalMatrix(l: List R) == + n := #l; ans := zero(n,n) + for i in minr(ans)..maxr(ans) for j in minc(ans)..maxc(ans) _ + for r in l repeat qsetelt_!(ans,i,j,r) + ans + + diagonalMatrix(list: List %) == + rows : NonNegativeInteger := 0 + cols : NonNegativeInteger := 0 + for mat in list repeat + rows := rows + nrows mat + cols := cols + ncols mat + ans := zero(rows,cols) + loR := minr ans; loC := minc ans + for mat in list repeat + hiR := loR + nrows(mat) - 1; hiC := loC + nrows(mat) - 1 + for i in loR..hiR for k in minr(mat)..maxr(mat) repeat + for j in loC..hiC for l in minc(mat)..maxc(mat) repeat + qsetelt_!(ans,i,j,qelt(mat,k,l)) + loR := hiR + 1; loC := hiC + 1 + ans + + coerce(v:Col) == + x := new(#v,1,0) + one := minc(x) + for i in minr(x)..maxr(x) for k in mini(v)..maxi(v) repeat + qsetelt_!(x,i,one,qelt(v,k)) + x + + transpose(v:Row) == + x := new(1,#v,0) + one := minr(x) + for j in minc(x)..maxc(x) for k in mini(v)..maxi(v) repeat + qsetelt_!(x,one,j,qelt(v,k)) + x + + transpose(x:%) == + ans := new(ncols x,nrows x,0) + for i in minr(ans)..maxr(ans) repeat + for j in minc(ans)..maxc(ans) repeat + qsetelt_!(ans,i,j,qelt(x,j,i)) + ans + + squareTop x == + nrows x < (cols := ncols x) => + error "squareTop: number of columns exceeds number of rows" + ans := new(cols,cols,0) + for i in minr(x)..(minr(x) + cols - 1) repeat + for j in minc(x)..maxc(x) repeat + qsetelt_!(ans,i,j,qelt(x,i,j)) + ans + + horizConcat(x,y) == + (rows := nrows x) ^= nrows y => + error "HConcat: matrices must have same number of rows" + ans := new(rows,(cols := ncols x) + ncols y,0) + for i in minr(x)..maxr(x) repeat + for j in minc(x)..maxc(x) repeat + qsetelt_!(ans,i,j,qelt(x,i,j)) + for i in minr(y)..maxr(y) repeat + for j in minc(y)..maxc(y) repeat + qsetelt_!(ans,i,j + cols,qelt(y,i,j)) + ans + + vertConcat(x,y) == + (cols := ncols x) ^= ncols y => + error "HConcat: matrices must have same number of columns" + ans := new((rows := nrows x) + nrows y,cols,0) + for i in minr(x)..maxr(x) repeat + for j in minc(x)..maxc(x) repeat + qsetelt_!(ans,i,j,qelt(x,i,j)) + for i in minr(y)..maxr(y) repeat + for j in minc(y)..maxc(y) repeat + qsetelt_!(ans,i + rows,j,qelt(y,i,j)) + ans + +--% Part extraction/assignment + + listOfLists x == + ll : List List R := nil() + for i in maxr(x)..minr(x) by -1 repeat + l : List R := nil() + for j in maxc(x)..minc(x) by -1 repeat + l := cons(qelt(x,i,j),l) + ll := cons(l,ll) + ll + + swapRows_!(x,i1,i2) == + (i1 < minr(x)) or (i1 > maxr(x)) or (i2 < minr(x)) or _ + (i2 > maxr(x)) => error "swapRows!: index out of range" + i1 = i2 => x + for j in minc(x)..maxc(x) repeat + r := qelt(x,i1,j) + qsetelt_!(x,i1,j,qelt(x,i2,j)) + qsetelt_!(x,i2,j,r) + x + + swapColumns_!(x,j1,j2) == + (j1 < minc(x)) or (j1 > maxc(x)) or (j2 < minc(x)) or _ + (j2 > maxc(x)) => error "swapColumns!: index out of range" + j1 = j2 => x + for i in minr(x)..maxr(x) repeat + r := qelt(x,i,j1) + qsetelt_!(x,i,j1,qelt(x,i,j2)) + qsetelt_!(x,i,j2,r) + x + + elt(x:%,rowList:List Integer,colList:List Integer) == + for ei in rowList repeat + (ei < minr(x)) or (ei > maxr(x)) => + error "elt: index out of range" + for ej in colList repeat + (ej < minc(x)) or (ej > maxc(x)) => + error "elt: index out of range" + y := new(# rowList,# colList,0) + for ei in rowList for i in minr(y)..maxr(y) repeat + for ej in colList for j in minc(y)..maxc(y) repeat + qsetelt_!(y,i,j,qelt(x,ei,ej)) + y + + setelt(x:%,rowList:List Integer,colList:List Integer,y:%) == + for ei in rowList repeat + (ei < minr(x)) or (ei > maxr(x)) => + error "setelt: index out of range" + for ej in colList repeat + (ej < minc(x)) or (ej > maxc(x)) => + error "setelt: index out of range" + ((# rowList) ^= (nrows y)) or ((# colList) ^= (ncols y)) => + error "setelt: matrix has bad dimensions" + for ei in rowList for i in minr(y)..maxr(y) repeat + for ej in colList for j in minc(y)..maxc(y) repeat + qsetelt_!(x,ei,ej,qelt(y,i,j)) + y + + subMatrix(x,i1,i2,j1,j2) == + (i2 < i1) => error "subMatrix: bad row indices" + (j2 < j1) => error "subMatrix: bad column indices" + (i1 < minr(x)) or (i2 > maxr(x)) => + error "subMatrix: index out of range" + (j1 < minc(x)) or (j2 > maxc(x)) => + error "subMatrix: index out of range" + rows := (i2 - i1 + 1) pretend NonNegativeInteger + cols := (j2 - j1 + 1) pretend NonNegativeInteger + y := new(rows,cols,0) + for i in minr(y)..maxr(y) for k in i1..i2 repeat + for j in minc(y)..maxc(y) for l in j1..j2 repeat + qsetelt_!(y,i,j,qelt(x,k,l)) + y + + setsubMatrix_!(x,i1,j1,y) == + i2 := i1 + nrows(y) -1 + j2 := j1 + ncols(y) -1 + (i1 < minr(x)) or (i2 > maxr(x)) => + error "setsubMatrix!: inserted matrix too big, use subMatrix to restrict it" + (j1 < minc(x)) or (j2 > maxc(x)) => + error "setsubMatrix!: inserted matrix too big, use subMatrix to restrict it" + for i in minr(y)..maxr(y) for k in i1..i2 repeat + for j in minc(y)..maxc(y) for l in j1..j2 repeat + qsetelt_!(x,k,l,qelt(y,i,j)) + x + +--% Arithmetic + + x + y == + ((r := nrows x) ^= nrows y) or ((c := ncols x) ^= ncols y) => + error "can't add matrices of different dimensions" + ans := new(r,c,0) + for i in minr(x)..maxr(x) repeat + for j in minc(x)..maxc(x) repeat + qsetelt_!(ans,i,j,qelt(x,i,j) + qelt(y,i,j)) + ans + + x - y == + ((r := nrows x) ^= nrows y) or ((c := ncols x) ^= ncols y) => + error "can't subtract matrices of different dimensions" + ans := new(r,c,0) + for i in minr(x)..maxr(x) repeat + for j in minc(x)..maxc(x) repeat + qsetelt_!(ans,i,j,qelt(x,i,j) - qelt(y,i,j)) + ans + + - x == map(- #1,x) + + a:R * x:% == map(a * #1,x) + x:% * a:R == map(#1 * a,x) + m:Integer * x:% == map(m * #1,x) + + x:% * y:% == + (ncols x ^= nrows y) => + error "can't multiply matrices of incompatible dimensions" + ans := new(nrows x,ncols y,0) + for i in minr(x)..maxr(x) repeat + for j in minc(y)..maxc(y) repeat + entry := + sum : R := 0 + for k in minr(y)..maxr(y) for l in minc(x)..maxc(x) repeat + sum := sum + qelt(x,i,l) * qelt(y,k,j) + sum + qsetelt_!(ans,i,j,entry) + ans + + positivePower:(%,Integer) -> % + positivePower(x,n) == +-- one? n => x + (n = 1) => x + odd? n => x * positivePower(x,n - 1) + y := positivePower(x,n quo 2) + y * y + + x:% ** n:NonNegativeInteger == + not((nn:= nrows x) = ncols x) => error "**: matrix must be square" + zero? n => scalarMatrix(nn,1) + positivePower(x,n) + + --if R has ConvertibleTo InputForm then + --convert(x:%):InputForm == + --convert [convert("matrix"::Symbol)@InputForm, + --convert listOfLists x]$List(InputForm) + + if Col has shallowlyMutable then + + x:% * v:Col == + ncols(x) ^= #v => + error "can't multiply matrix A and vector v if #cols A ^= #v" + w : Col := new(nrows x,0) + for i in minr(x)..maxr(x) for k in mini(w)..maxi(w) repeat + w.k := + sum : R := 0 + for j in minc(x)..maxc(x) for l in mini(v)..maxi(v) repeat + sum := sum + qelt(x,i,j) * v(l) + sum + w + + if Row has shallowlyMutable then + + v:Row * x:% == + nrows(x) ^= #v => + error "can't multiply vector v and matrix A if #rows A ^= #v" + w : Row := new(ncols x,0) + for j in minc(x)..maxc(x) for k in mini(w)..maxi(w) repeat + w.k := + sum : R := 0 + for i in minr(x)..maxr(x) for l in mini(v)..maxi(v) repeat + sum := sum + qelt(x,i,j) * v(l) + sum + w + + if R has IntegralDomain then + x exquo a == + ans := new(nrows x,ncols x,0) + for i in minr(x)..maxr(x) repeat + for j in minc(x)..maxc(x) repeat + entry := + (r := (qelt(x,i,j) exquo a)) case "failed" => + return "failed" + r :: R + qsetelt_!(ans,i,j,entry) + ans + + if R has Field then + x / r == map(#1 / r,x) + + x:% ** n:Integer == + not((nn:= nrows x) = ncols x) => error "**: matrix must be square" + zero? n => scalarMatrix(nn,1) + positive? n => positivePower(x,n) + (xInv := inverse x) case "failed" => + error "**: matrix must be invertible" + positivePower(xInv :: %,-n) + +@ +\section{category RMATCAT RectangularMatrixCategory} +<<category RMATCAT RectangularMatrixCategory>>= +)abbrev category RMATCAT RectangularMatrixCategory +++ Authors: Grabmeier, Gschnitzer, Williamson +++ Date Created: 1987 +++ Date Last Updated: July 1990 +++ Basic Operations: +++ Related Domains: RectangularMatrix(m,n,R) +++ Also See: +++ AMS Classifications: +++ Keywords: +++ Examples: +++ References: +++ Description: +++ \spadtype{RectangularMatrixCategory} is a category of matrices of fixed +++ dimensions. The dimensions of the matrix will be parameters of the +++ domain. Domains in this category will be R-modules and will be +++ non-mutable. +RectangularMatrixCategory(m,n,R,Row,Col): Category == Definition where + m,n : NonNegativeInteger + R : Ring + Row : DirectProductCategory(n,R) + Col : DirectProductCategory(m,R) + + Definition ==> Join(BiModule(R,R),HomogeneousAggregate(R)) with + + finiteAggregate + ++ matrices are finite + + if R has CommutativeRing then Module(R) + +--% Matrix creation + + matrix: List List R -> % + ++ \spad{matrix(l)} converts the list of lists l to a matrix, where the + ++ list of lists is viewed as a list of the rows of the matrix. + +--% Predicates + + square? : % -> Boolean + ++ \spad{square?(m)} returns true if m is a square matrix (i.e. if m + ++ has the same number of rows as columns) and false otherwise. + diagonal?: % -> Boolean + ++ \spad{diagonal?(m)} returns true if the matrix m is square and diagonal + ++ (i.e. all entries of m not on the diagonal are zero) and false + ++ otherwise. + symmetric?: % -> Boolean + ++ \spad{symmetric?(m)} returns true if the matrix m is square and + ++ symmetric (i.e. \spad{m[i,j] = m[j,i]} for all \spad{i} and j) and + ++ false otherwise. + antisymmetric?: % -> Boolean + ++ \spad{antisymmetric?(m)} returns true if the matrix m is square and + ++ antisymmetric (i.e. \spad{m[i,j] = -m[j,i]} for all \spad{i} and j) + ++ and false otherwise. + +--% Size inquiries + + minRowIndex : % -> Integer + ++ \spad{minRowIndex(m)} returns the index of the 'first' row of the + ++ matrix m. + maxRowIndex : % -> Integer + ++ \spad{maxRowIndex(m)} returns the index of the 'last' row of the + ++ matrix m. + minColIndex : % -> Integer + ++ \spad{minColIndex(m)} returns the index of the 'first' column of the + ++ matrix m. + maxColIndex : % -> Integer + ++ \spad{maxColIndex(m)} returns the index of the 'last' column of the + ++ matrix m. + nrows : % -> NonNegativeInteger + ++ \spad{nrows(m)} returns the number of rows in the matrix m. + ncols : % -> NonNegativeInteger + ++ \spad{ncols(m)} returns the number of columns in the matrix m. + +--% Part extractions + + listOfLists: % -> List List R + ++ \spad{listOfLists(m)} returns the rows of the matrix m as a list + ++ of lists. + elt: (%,Integer,Integer) -> R + ++ \spad{elt(m,i,j)} returns the element in the \spad{i}th row and + ++ \spad{j}th column of the matrix m. + ++ Error: if indices are outside the proper + ++ ranges. + qelt: (%,Integer,Integer) -> R + ++ \spad{qelt(m,i,j)} returns the element in the \spad{i}th row and + ++ \spad{j}th column of + ++ the matrix m. Note: there is NO error check to determine if indices are + ++ in the proper ranges. + elt: (%,Integer,Integer,R) -> R + ++ \spad{elt(m,i,j,r)} returns the element in the \spad{i}th row and + ++ \spad{j}th column of the matrix m, if m has an \spad{i}th row and a + ++ \spad{j}th column, and returns r otherwise. + row: (%,Integer) -> Row + ++ \spad{row(m,i)} returns the \spad{i}th row of the matrix m. + ++ Error: if the index is outside the proper range. + column: (%,Integer) -> Col + ++ \spad{column(m,j)} returns the \spad{j}th column of the matrix m. + ++ Error: if the index outside the proper range. + +--% Map and Zip + + map: (R -> R,%) -> % + ++ \spad{map(f,a)} returns b, where \spad{b(i,j) = a(i,j)} for all i, j. + map:((R,R) -> R,%,%) -> % + ++ \spad{map(f,a,b)} returns c, where c is such that + ++ \spad{c(i,j) = f(a(i,j),b(i,j))} for all \spad{i}, j. + +--% Arithmetic + + if R has IntegralDomain then + "exquo": (%,R) -> Union(%,"failed") + ++ \spad{exquo(m,r)} computes the exact quotient of the elements + ++ of m by r, returning \axiom{"failed"} if this is not possible. + if R has Field then + "/": (%,R) -> % + ++ \spad{m/r} divides the elements of m by r. Error: if \spad{r = 0}. + +--% Linear algebra + + if R has EuclideanDomain then + rowEchelon: % -> % + ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m. + if R has IntegralDomain then + rank: % -> NonNegativeInteger + ++ \spad{rank(m)} returns the rank of the matrix m. + nullity: % -> NonNegativeInteger + ++ \spad{nullity(m)} returns the nullity of the matrix m. This is + ++ the dimension of the null space of the matrix m. + nullSpace: % -> List Col + ++ \spad{nullSpace(m)}+ returns a basis for the null space of + ++ the matrix m. + add + nrows x == m + ncols x == n + square? x == m = n + + diagonal? x == + not square? x => false + for i in minRowIndex x .. maxRowIndex x repeat + for j in minColIndex x .. maxColIndex x + | (j - minColIndex x) ^= (i - minRowIndex x) repeat + not zero? qelt(x, i, j) => return false + true + + symmetric? x == + m ^= n => false + mr := minRowIndex x; mc := minColIndex x + for i in 0..(n - 1) repeat + for j in (i + 1)..(n - 1) repeat + qelt(x,mr + i,mc + j) ^= qelt(x,mr + j,mc + i) => return false + true + + antisymmetric? x == + m ^= n => false + mr := minRowIndex x; mc := minColIndex x + for i in 0..(n - 1) repeat + for j in i..(n - 1) repeat + qelt(x,mr + i,mc + j) ^= -qelt(x,mr + j,mc + i) => + return false + true + +@ +\section{category SMATCAT SquareMatrixCategory} +<<category SMATCAT SquareMatrixCategory>>= +)abbrev category SMATCAT SquareMatrixCategory +++ Authors: Grabmeier, Gschnitzer, Williamson +++ Date Created: 1987 +++ Date Last Updated: July 1990 +++ Basic Operations: +++ Related Domains: SquareMatrix(ndim,R) +++ Also See: +++ AMS Classifications: +++ Keywords: +++ Examples: +++ References: +++ Description: +++ \spadtype{SquareMatrixCategory} is a general square matrix category which +++ allows different representations and indexing schemes. Rows and +++ columns may be extracted with rows returned as objects of +++ type Row and colums returned as objects of type Col. +SquareMatrixCategory(ndim,R,Row,Col): Category == Definition where + ndim : NonNegativeInteger + R : Ring + Row : DirectProductCategory(ndim,R) + Col : DirectProductCategory(ndim,R) + I ==> Integer + + Definition ==> Join(DifferentialExtension R, BiModule(R, R),_ + RectangularMatrixCategory(ndim,ndim,R,Row,Col),_ + FullyRetractableTo R,_ + FullyLinearlyExplicitRingOver R) with + if R has CommutativeRing then Module(R) + scalarMatrix: R -> % + ++ \spad{scalarMatrix(r)} returns an n-by-n matrix with r's on the + ++ diagonal and zeroes elsewhere. + diagonalMatrix: List R -> % + ++ \spad{diagonalMatrix(l)} returns a diagonal matrix with the elements + ++ of l on the diagonal. + diagonal: % -> Row + ++ \spad{diagonal(m)} returns a row consisting of the elements on the + ++ diagonal of the matrix m. + trace: % -> R + ++ \spad{trace(m)} returns the trace of the matrix m. this is the sum + ++ of the elements on the diagonal of the matrix m. + diagonalProduct: % -> R + ++ \spad{diagonalProduct(m)} returns the product of the elements on the + ++ diagonal of the matrix m. + "*": (%,Col) -> Col + ++ \spad{x * c} is the product of the matrix x and the column vector c. + ++ Error: if the dimensions are incompatible. + "*": (Row,%) -> Row + ++ \spad{r * x} is the product of the row vector r and the matrix x. + ++ Error: if the dimensions are incompatible. + +--% Linear algebra + + if R has commutative("*") then + Algebra R + determinant: % -> R + ++ \spad{determinant(m)} returns the determinant of the matrix m. + minordet: % -> R + ++ \spad{minordet(m)} computes the determinant of the matrix m + ++ using minors. + if R has Field then + inverse: % -> Union(%,"failed") + ++ \spad{inverse(m)} returns the inverse of the matrix m, if that + ++ matrix is invertible and returns "failed" otherwise. + "**": (%,Integer) -> % + ++ \spad{m**n} computes an integral power of the matrix m. + ++ Error: if the matrix is not invertible. + + add + minr ==> minRowIndex + maxr ==> maxRowIndex + minc ==> minColIndex + maxc ==> maxColIndex + mini ==> minIndex + maxi ==> maxIndex + + positivePower:(%,Integer) -> % + positivePower(x,n) == +-- one? n => x + (n = 1) => x + odd? n => x * positivePower(x,n - 1) + y := positivePower(x,n quo 2) + y * y + + x:% ** n:NonNegativeInteger == + zero? n => scalarMatrix 1 + positivePower(x,n) + + coerce(r:R) == scalarMatrix r + + equation2R: Vector % -> Matrix R + + differentiate(x:%,d:R -> R) == map(d,x) + + diagonal x == + v:Vector(R) := new(ndim,0) + for i in minr x .. maxr x + for j in minc x .. maxc x + for k in minIndex v .. maxIndex v repeat + qsetelt_!(v, k, qelt(x, i, j)) + directProduct v + + retract(x:%):R == + diagonal? x => retract diagonal x + error "Not retractable" + + retractIfCan(x:%):Union(R, "failed") == + diagonal? x => retractIfCan diagonal x + "failed" + + equation2R v == + ans:Matrix(Col) := new(ndim,#v,0) + for i in minr ans .. maxr ans repeat + for j in minc ans .. maxc ans repeat + qsetelt_!(ans, i, j, column(qelt(v, j), i)) + reducedSystem ans + + reducedSystem(x:Matrix %):Matrix(R) == + empty? x => new(0,0,0) + reduce(vertConcat, [equation2R row(x, i) + for i in minr x .. maxr x])$List(Matrix R) + + reducedSystem(m:Matrix %, v:Vector %): + Record(mat:Matrix R, vec:Vector R) == + vh:Vector(R) := + empty? v => new(0,0) + rh := reducedSystem(v::Matrix %)@Matrix(R) + column(rh, minColIndex rh) + [reducedSystem(m)@Matrix(R), vh] + + trace x == + tr : R := 0 + for i in minr(x)..maxr(x) for j in minc(x)..maxc(x) repeat + tr := tr + x(i,j) + tr + + diagonalProduct x == + pr : R := 1 + for i in minr(x)..maxr(x) for j in minc(x)..maxc(x) repeat + pr := pr * x(i,j) + pr + + if R has Field then + + x:% ** n:Integer == + zero? n => scalarMatrix 1 + positive? n => positivePower(x,n) + (xInv := inverse x) case "failed" => + error "**: matrix must be invertible" + positivePower(xInv :: %,-n) + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<category MATCAT MatrixCategory>> +<<category RMATCAT RectangularMatrixCategory>> +<<category SMATCAT SquareMatrixCategory>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |