aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/interval.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/interval.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/interval.spad.pamphlet')
-rw-r--r--src/algebra/interval.spad.pamphlet547
1 files changed, 547 insertions, 0 deletions
diff --git a/src/algebra/interval.spad.pamphlet b/src/algebra/interval.spad.pamphlet
new file mode 100644
index 00000000..ab9bfa9e
--- /dev/null
+++ b/src/algebra/interval.spad.pamphlet
@@ -0,0 +1,547 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra interval.spad}
+\author{Mike Dewar}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{category INTCAT IntervalCategory}
+<<category INTCAT IntervalCategory>>=
+)abbrev category INTCAT IntervalCategory
++++ Author: Mike Dewar
++++ Date Created: November 1996
++++ Date Last Updated:
++++ Basic Functions:
++++ Related Constructors:
++++ Also See:
++++ AMS Classifications:
++++ Keywords:
++++ References:
++++ Description:
++++ This category implements of interval arithmetic and transcendental
++++ functions over intervals.
+IntervalCategory(R: Join(FloatingPointSystem,TranscendentalFunctionCategory)):
+ Category == Join(GcdDomain, OrderedSet, TranscendentalFunctionCategory, RadicalCategory, RetractableTo(Integer)) with
+ approximate
+ interval : (R,R) -> %
+ ++ interval(inf,sup) creates a new interval, either \axiom{[inf,sup]} if
+ ++ \axiom{inf <= sup} or \axiom{[sup,in]} otherwise.
+ qinterval : (R,R) -> %
+ ++ qinterval(inf,sup) creates a new interval \axiom{[inf,sup]}, without
+ ++ checking the ordering on the elements.
+ interval : R -> %
+ ++ interval(f) creates a new interval around f.
+ interval : Fraction Integer -> %
+ ++ interval(f) creates a new interval around f.
+ inf : % -> R
+ ++ inf(u) returns the infinum of \axiom{u}.
+ sup : % -> R
+ ++ sup(u) returns the supremum of \axiom{u}.
+ width : % -> R
+ ++ width(u) returns \axiom{sup(u) - inf(u)}.
+ positive? : % -> Boolean
+ ++ positive?(u) returns \axiom{true} if every element of u is positive,
+ ++ \axiom{false} otherwise.
+ negative? : % -> Boolean
+ ++ negative?(u) returns \axiom{true} if every element of u is negative,
+ ++ \axiom{false} otherwise.
+ contains? : (%,R) -> Boolean
+ ++ contains?(i,f) returns true if \axiom{f} is contained within the interval
+ ++ \axiom{i}, false otherwise.
+
+@
+\section{domain INTRVL Interval}
+<<domain INTRVL Interval>>=
+)abbrev domain INTRVL Interval
++++ Author: Mike Dewar
++++ Date Created: November 1996
++++ Date Last Updated:
++++ Basic Functions:
++++ Related Constructors:
++++ Also See:
++++ AMS Classifications:
++++ Keywords:
++++ References:
++++ Description:
++++ This domain is an implementation of interval arithmetic and transcendental
++++ functions over intervals.
+Interval(R:Join(FloatingPointSystem,TranscendentalFunctionCategory)): IntervalCategory(R) == add
+
+ import Integer
+-- import from R
+
+ Rep := Record(Inf:R, Sup:R)
+
+ roundDown(u:R):R ==
+ if zero?(u) then float(-1,-(bits() pretend Integer))
+ else float(mantissa(u) - 1,exponent(u))
+
+ roundUp(u:R):R ==
+ if zero?(u) then float(1, -(bits()) pretend Integer)
+ else float(mantissa(u) + 1,exponent(u))
+
+ -- Sometimes the float representation does not use all the bits (e.g. when
+ -- representing an integer in software using arbitrary-length Integers as
+ -- your mantissa it is convenient to keep them exact). This function
+ -- normalises things so that rounding etc. works as expected. It is only
+ -- called when creating new intervals.
+ normaliseFloat(u:R):R ==
+ zero? u => u
+ m : Integer := mantissa u
+ b : Integer := bits() pretend Integer
+ l : Integer := length(m)
+ if l < b then
+ BASE : Integer := base()$R pretend Integer
+ float(m*BASE**((b-l) pretend PositiveInteger),exponent(u)-b+l)
+ else
+ u
+
+ interval(i:R,s:R):% ==
+ i > s => [roundDown normaliseFloat s,roundUp normaliseFloat i]
+ [roundDown normaliseFloat i,roundUp normaliseFloat s]
+
+ interval(f:R):% ==
+ zero?(f) => 0
+ one?(f) => 1
+ -- This next part is necessary to allow e.g. mapping between Expressions:
+ -- AXIOM assumes that Integers stay as Integers!
+-- import from Union(value1:Integer,failed:"failed")
+ fnew : R := normaliseFloat f
+ retractIfCan(f)@Union(Integer,"failed") case "failed" =>
+ [roundDown fnew, roundUp fnew]
+ [fnew,fnew]
+
+ qinterval(i:R,s:R):% ==
+ [roundDown normaliseFloat i,roundUp normaliseFloat s]
+
+ exactInterval(i:R,s:R):% == [i,s]
+ exactSupInterval(i:R,s:R):% == [roundDown i,s]
+ exactInfInterval(i:R,s:R):% == [i,roundUp s]
+
+ inf(u:%):R == u.Inf
+ sup(u:%):R == u.Sup
+ width(u:%):R == u.Sup - u.Inf
+
+ contains?(u:%,f:R):Boolean == (f > inf(u)) and (f < sup(u))
+
+ positive?(u:%):Boolean == inf(u) > 0
+ negative?(u:%):Boolean == sup(u) < 0
+
+ _< (a:%,b:%):Boolean ==
+ if inf(a) < inf(b) then
+ true
+ else if inf(a) > inf(b) then
+ false
+ else
+ sup(a) < sup(b)
+
+ _+ (a:%,b:%):% ==
+ -- A couple of blatent hacks to preserve the Ring Axioms!
+ if zero?(a) then return(b) else if zero?(b) then return(a)
+ if a = b then return qinterval(2*inf(a),2*sup(a))
+ qinterval(inf(a) + inf(b), sup(a) + sup(b))
+
+
+ _- (a:%,b:%):% ==
+ if zero?(a) then return(-b) else if zero?(b) then return(a)
+ if a = b then 0 else qinterval(inf(a) - sup(b), sup(a) - inf(b))
+
+
+ _* (a:%,b:%):% ==
+ -- A couple of blatent hacks to preserve the Ring Axioms!
+ if one?(a) then return(b) else if one?(b) then return(a)
+ if zero?(a) then return(0) else if zero?(b) then return(0)
+ prods : List R := sort [inf(a)*inf(b),sup(a)*sup(b),
+ inf(a)*sup(b),sup(a)*inf(b)]
+ qinterval(first prods, last prods)
+
+
+ _* (a:Integer,b:%):% ==
+ if (a > 0) then
+ qinterval(a*inf(b),a*sup(b))
+ else if (a < 0) then
+ qinterval(a*sup(b),a*inf(b))
+ else
+ 0
+
+ _* (a:PositiveInteger,b:%):% == qinterval(a*inf(b),a*sup(b))
+
+ _*_* (a:%,n:PositiveInteger):% ==
+ contains?(a,0) and zero?((n pretend Integer) rem 2) =>
+ interval(0,max(inf(a)**n,sup(a)**n))
+ interval(inf(a)**n,sup(a)**n)
+
+
+ _^ (a:%,n:PositiveInteger):% ==
+ contains?(a,0) and zero?((n pretend Integer) rem 2) =>
+ interval(0,max(inf(a)**n,sup(a)**n))
+ interval(inf(a)**n,sup(a)**n)
+
+ _- (a:%):% == exactInterval(-sup(a),-inf(a))
+
+ _= (a:%,b:%):Boolean == (inf(a)=inf(b)) and (sup(a)=sup(b))
+ _~_= (a:%,b:%):Boolean == (inf(a)~=inf(b)) or (sup(a)~=sup(b))
+
+ 1 ==
+ one : R := normaliseFloat 1
+ [one,one]
+
+ 0 == [0,0]
+
+ recip(u:%):Union(%,"failed") ==
+ contains?(u,0) => "failed"
+ vals:List R := sort [1/inf(u),1/sup(u)]$List(R)
+ qinterval(first vals, last vals)
+
+
+ unit?(u:%):Boolean == contains?(u,0)
+
+ _exquo(u:%,v:%):Union(%,"failed") ==
+ contains?(v,0) => "failed"
+ one?(v) => u
+ u=v => 1
+ u=-v => -1
+ vals:List R := sort [inf(u)/inf(v),inf(u)/sup(v),sup(u)/inf(v),sup(u)/sup(v)]$List(R)
+ qinterval(first vals, last vals)
+
+
+ gcd(u:%,v:%):% == 1
+
+ coerce(u:Integer):% ==
+ ur := normaliseFloat(u::R)
+ exactInterval(ur,ur)
+
+
+ interval(u:Fraction Integer):% ==
+-- import log2 : % -> %
+-- coerce : Integer -> %
+-- retractIfCan : % -> Union(value1:Integer,failed:"failed")
+-- from Float
+ flt := u::R
+
+ -- Test if the representation in R is exact
+ --den := denom(u)::Float
+ bin : Union(Integer,"failed") := retractIfCan(log2(denom(u)::Float))
+ bin case Integer and length(numer u)$Integer < (bits() pretend Integer) =>
+ flt := normaliseFloat flt
+ exactInterval(flt,flt)
+
+ qinterval(flt,flt)
+
+
+ retractIfCan(u:%):Union(Integer,"failed") ==
+ not zero? width(u) => "failed"
+ retractIfCan inf u
+
+
+ retract(u:%):Integer ==
+ not zero? width(u) =>
+ error "attempt to retract a non-Integer interval to an Integer"
+ retract inf u
+
+
+ coerce(u:%):OutputForm ==
+ bracket([coerce inf(u), coerce sup(u)]$List(OutputForm))
+
+ characteristic():NonNegativeInteger == 0
+
+
+ -- Explicit export from TranscendentalFunctionCategory
+ pi():% == qinterval(pi(),pi())
+
+ -- From ElementaryFunctionCategory
+ log(u:%):% ==
+ positive?(u) => qinterval(log inf u, log sup u)
+ error "negative logs in interval"
+
+
+ exp(u:%):% == qinterval(exp inf u, exp sup u)
+
+ _*_* (u:%,v:%):% ==
+ zero?(v) => if zero?(u) then error "0**0 is undefined" else 1
+ one?(u) => 1
+ expts : List R := sort [inf(u)**inf(v),sup(u)**sup(v),
+ inf(u)**sup(v),sup(u)**inf(v)]
+ qinterval(first expts, last expts)
+
+ -- From TrigonometricFunctionCategory
+
+ -- This function checks whether an interval contains a value of the form
+ -- `offset + 2 n pi'.
+ hasTwoPiMultiple(offset:R,ipi:R,i:%):Boolean ==
+ next : Integer := retract ceiling( (inf(i) - offset)/(2*ipi) )
+ contains?(i,offset+2*next*ipi)
+
+
+ -- This function checks whether an interval contains a value of the form
+ -- `offset + n pi'.
+ hasPiMultiple(offset:R,ipi:R,i:%):Boolean ==
+ next : Integer := retract ceiling( (inf(i) - offset)/ipi )
+ contains?(i,offset+next*ipi)
+
+
+ sin(u:%):% ==
+ ipi : R := pi()$R
+ hasOne? : Boolean := hasTwoPiMultiple(ipi/(2::R),ipi,u)
+ hasMinusOne? : Boolean := hasTwoPiMultiple(3*ipi/(2::R),ipi,u)
+
+ if hasOne? and hasMinusOne? then
+ exactInterval(-1,1)
+ else
+ vals : List R := sort [sin inf u, sin sup u]
+ if hasOne? then
+ exactSupInterval(first vals, 1)
+ else if hasMinusOne? then
+ exactInfInterval(-1,last vals)
+ else
+ qinterval(first vals, last vals)
+
+
+
+ cos(u:%):% ==
+ ipi : R := pi()
+ hasOne? : Boolean := hasTwoPiMultiple(0,ipi,u)
+ hasMinusOne? : Boolean := hasTwoPiMultiple(ipi,ipi,u)
+
+ if hasOne? and hasMinusOne? then
+ exactInterval(-1,1)
+ else
+ vals : List R := sort [cos inf u, cos sup u]
+ if hasOne? then
+ exactSupInterval(first vals, 1)
+ else if hasMinusOne? then
+ exactInfInterval(-1,last vals)
+ else
+ qinterval(first vals, last vals)
+
+
+
+ tan(u:%):% ==
+ ipi : R := pi()
+ if width(u) > ipi then
+ error "Interval contains a singularity"
+ else
+ -- Since we know the interval is less than pi wide, monotonicity implies
+ -- that there is no singularity. If there is a singularity on a endpoint
+ -- of the interval the user will see the error generated by R.
+ lo : R := tan inf u
+ hi : R := tan sup u
+
+ lo > hi => error "Interval contains a singularity"
+ qinterval(lo,hi)
+
+
+
+ csc(u:%):% ==
+ ipi : R := pi()
+ if width(u) > ipi then
+ error "Interval contains a singularity"
+ else
+-- import from Integer
+ -- singularities are at multiples of Pi
+ if hasPiMultiple(0,ipi,u) then error "Interval contains a singularity"
+ vals : List R := sort [csc inf u, csc sup u]
+ if hasTwoPiMultiple(ipi/(2::R),ipi,u) then
+ exactInfInterval(1,last vals)
+ else if hasTwoPiMultiple(3*ipi/(2::R),ipi,u) then
+ exactSupInterval(first vals,-1)
+ else
+ qinterval(first vals, last vals)
+
+
+
+ sec(u:%):% ==
+ ipi : R := pi()
+ if width(u) > ipi then
+ error "Interval contains a singularity"
+ else
+-- import from Integer
+ -- singularities are at Pi/2 + n Pi
+ if hasPiMultiple(ipi/(2::R),ipi,u) then
+ error "Interval contains a singularity"
+ vals : List R := sort [sec inf u, sec sup u]
+ if hasTwoPiMultiple(0,ipi,u) then
+ exactInfInterval(1,last vals)
+ else if hasTwoPiMultiple(ipi,ipi,u) then
+ exactSupInterval(first vals,-1)
+ else
+ qinterval(first vals, last vals)
+
+
+
+
+ cot(u:%):% ==
+ ipi : R := pi()
+ if width(u) > ipi then
+ error "Interval contains a singularity"
+ else
+ -- Since we know the interval is less than pi wide, monotonicity implies
+ -- that there is no singularity. If there is a singularity on a endpoint
+ -- of the interval the user will see the error generated by R.
+ hi : R := cot inf u
+ lo : R := cot sup u
+
+ lo > hi => error "Interval contains a singularity"
+ qinterval(lo,hi)
+
+
+
+ -- From ArcTrigonometricFunctionCategory
+
+ asin(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if (lo < -1) or (hi > 1) then error "asin only defined on the region -1..1"
+ qinterval(asin lo,asin hi)
+
+
+ acos(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if (lo < -1) or (hi > 1) then error "acos only defined on the region -1..1"
+ qinterval(acos hi,acos lo)
+
+
+ atan(u:%):% == qinterval(atan inf u, atan sup u)
+
+ acot(u:%):% == qinterval(acot sup u, acot inf u)
+
+ acsc(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then
+ error "acsc not defined on the region -1..1"
+ qinterval(acsc hi, acsc lo)
+
+
+ asec(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if ((lo < -1) and (hi > -1)) or ((lo < 1) and (hi > 1)) then
+ error "asec not defined on the region -1..1"
+ qinterval(asec lo, asec hi)
+
+
+ -- From HyperbolicFunctionCategory
+
+ tanh(u:%):% == qinterval(tanh inf u, tanh sup u)
+
+ sinh(u:%):% == qinterval(sinh inf u, sinh sup u)
+
+ sech(u:%):% ==
+ negative? u => qinterval(sech inf u, sech sup u)
+ positive? u => qinterval(sech sup u, sech inf u)
+ vals : List R := sort [sech inf u, sech sup u]
+ exactSupInterval(first vals,1)
+
+
+ cosh(u:%):% ==
+ negative? u => qinterval(cosh sup u, cosh inf u)
+ positive? u => qinterval(cosh inf u, cosh sup u)
+ vals : List R := sort [cosh inf u, cosh sup u]
+ exactInfInterval(1,last vals)
+
+
+ csch(u:%):% ==
+ contains?(u,0) => error "csch: singularity at zero"
+ qinterval(csch sup u, csch inf u)
+
+
+ coth(u:%):% ==
+ contains?(u,0) => error "coth: singularity at zero"
+ qinterval(coth sup u, coth inf u)
+
+
+ -- From ArcHyperbolicFunctionCategory
+
+ acosh(u:%):% ==
+ inf(u)<1 => error "invalid argument: acosh only defined on the region 1.."
+ qinterval(acosh inf u, acosh sup u)
+
+
+ acoth(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then
+ error "acoth not defined on the region -1..1"
+ qinterval(acoth hi, acoth lo)
+
+
+ acsch(u:%):% ==
+ contains?(u,0) => error "acsch: singularity at zero"
+ qinterval(acsch sup u, acsch inf u)
+
+
+ asech(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if (lo <= 0) or (hi > 1) then
+ error "asech only defined on the region 0 < x <= 1"
+ qinterval(asech hi, asech lo)
+
+
+ asinh(u:%):% == qinterval(asinh inf u, asinh sup u)
+
+ atanh(u:%):% ==
+ lo : R := inf(u)
+ hi : R := sup(u)
+ if (lo <= -1) or (hi >= 1) then
+ error "atanh only defined on the region -1 < x < 1"
+ qinterval(atanh lo, atanh hi)
+
+
+ -- From RadicalCategory
+ _*_* (u:%,n:Fraction Integer):% == interval(inf(u)**n,sup(u)**n)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<category INTCAT IntervalCategory>>
+<<domain INTRVL Interval>>
+
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}
+
+