diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/integrat.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/integrat.spad.pamphlet')
-rw-r--r-- | src/algebra/integrat.spad.pamphlet | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/src/algebra/integrat.spad.pamphlet b/src/algebra/integrat.spad.pamphlet new file mode 100644 index 00000000..f70dfe1c --- /dev/null +++ b/src/algebra/integrat.spad.pamphlet @@ -0,0 +1,269 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra integrat.spad} +\author{Manuel Bronstein} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package FSCINT FunctionSpaceComplexIntegration} +<<package FSCINT FunctionSpaceComplexIntegration>>= +)abbrev package FSCINT FunctionSpaceComplexIntegration +++ Top-level complex function integration +++ Author: Manuel Bronstein +++ Date Created: 4 February 1988 +++ Date Last Updated: 11 June 1993 +++ Description: +++ \spadtype{FunctionSpaceComplexIntegration} provides functions for the +++ indefinite integration of complex-valued functions. +++ Keywords: function, integration. +FunctionSpaceComplexIntegration(R, F): Exports == Implementation where + R : Join(EuclideanDomain, OrderedSet, CharacteristicZero, + RetractableTo Integer, LinearlyExplicitRingOver Integer) + F : Join(TranscendentalFunctionCategory, + AlgebraicallyClosedFunctionSpace R) + + SE ==> Symbol + G ==> Complex R + FG ==> Expression G + IR ==> IntegrationResult F + + Exports ==> with + internalIntegrate : (F, SE) -> IR + ++ internalIntegrate(f, x) returns the integral of \spad{f(x)dx} + ++ where x is viewed as a complex variable. + internalIntegrate0: (F, SE) -> IR + ++ internalIntegrate0 should be a local function, but is conditional. + complexIntegrate : (F, SE) -> F + ++ complexIntegrate(f, x) returns the integral of \spad{f(x)dx} + ++ where x is viewed as a complex variable. + + Implementation ==> add + import IntegrationTools(R, F) + import ElementaryIntegration(R, F) + import ElementaryIntegration(G, FG) + import AlgebraicManipulations(R, F) + import AlgebraicManipulations(G, FG) + import TrigonometricManipulations(R, F) + import IntegrationResultToFunction(R, F) + import IntegrationResultFunctions2(FG, F) + import ElementaryFunctionStructurePackage(R, F) + import ElementaryFunctionStructurePackage(G, FG) + import InnerTrigonometricManipulations(R, F, FG) + + K2KG: Kernel F -> Kernel FG + + K2KG k == retract(tan F2FG first argument k)@Kernel(FG) + + complexIntegrate(f, x) == + removeConstantTerm(complexExpand internalIntegrate(f, x), x) + + if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer) + and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then + import PatternMatchIntegration(R, F) + internalIntegrate0(f, x) == + intPatternMatch(f, x, lfintegrate, pmComplexintegrate) + + else internalIntegrate0(f, x) == lfintegrate(f, x) + + internalIntegrate(f, x) == + f := distribute(f, x::F) + any?(has?(operator #1, "rtrig"), + [k for k in tower(g := realElementary(f, x)) + | member?(x, variables(k::F))]$List(Kernel F))$List(Kernel F) => + h := trigs2explogs(F2FG g, [K2KG k for k in tower f + | is?(k, "tan"::SE) or is?(k, "cot"::SE)], [x]) + real?(g := FG2F h) => + internalIntegrate0(rootSimp(rischNormalize(g, x).func), x) + real?(g := FG2F(h := rootSimp(rischNormalize(h, x).func))) => + internalIntegrate0(g, x) + map(FG2F, lfintegrate(h, x)) + internalIntegrate0(rootSimp(rischNormalize(g, x).func), x) + +@ +\section{package FSINT FunctionSpaceIntegration} +<<package FSINT FunctionSpaceIntegration>>= +)abbrev package FSINT FunctionSpaceIntegration +++ Top-level real function integration +++ Author: Manuel Bronstein +++ Date Created: 4 February 1988 +++ Date Last Updated: 11 June 1993 +++ Keywords: function, integration. +++ Description: +++ \spadtype{FunctionSpaceIntegration} provides functions for the +++ indefinite integration of real-valued functions. +++ Examples: )r INTEF INPUT +FunctionSpaceIntegration(R, F): Exports == Implementation where + R : Join(EuclideanDomain, OrderedSet, CharacteristicZero, + RetractableTo Integer, LinearlyExplicitRingOver Integer) + F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory, + AlgebraicallyClosedFunctionSpace R) + + B ==> Boolean + G ==> Complex R + K ==> Kernel F + P ==> SparseMultivariatePolynomial(R, K) + SE ==> Symbol + IR ==> IntegrationResult F + FG ==> Expression G + ALGOP ==> "%alg" + TANTEMP ==> "%temptan"::SE + + Exports ==> with + integrate: (F, SE) -> Union(F, List F) + ++ integrate(f, x) returns the integral of \spad{f(x)dx} + ++ where x is viewed as a real variable. + + Implementation ==> add + import IntegrationTools(R, F) + import ElementaryIntegration(R, F) + import ElementaryIntegration(G, FG) + import AlgebraicManipulations(R, F) + import TrigonometricManipulations(R, F) + import IntegrationResultToFunction(R, F) + import TranscendentalManipulations(R, F) + import IntegrationResultFunctions2(FG, F) + import FunctionSpaceComplexIntegration(R, F) + import ElementaryFunctionStructurePackage(R, F) + import InnerTrigonometricManipulations(R, F, FG) + import PolynomialCategoryQuotientFunctions(IndexedExponents K, + K, R, SparseMultivariatePolynomial(R, K), F) + + K2KG : K -> Kernel FG + postSubst : (F, List F, List K, B, List K, SE) -> F + rinteg : (IR, F, SE, B, B) -> Union(F, List F) + mkPrimh : (F, SE, B, B) -> F + trans? : F -> B + goComplex?: (B, List K, List K) -> B + halfangle : F -> F + Khalf : K -> F + tan2temp : K -> K + + optemp:BasicOperator := operator(TANTEMP, 1) + + K2KG k == retract(tan F2FG first argument k)@Kernel(FG) + tan2temp k == kernel(optemp, argument k, height k)$K + + trans? f == + any?(is?(#1,"log"::SE) or is?(#1,"exp"::SE) or is?(#1,"atan"::SE), + operators f)$List(BasicOperator) + + mkPrimh(f, x, h, comp) == + f := real f + if comp then f := removeSinSq f + g := mkPrim(f, x) + h and trans? g => htrigs g + g + + rinteg(i, f, x, h, comp) == + not elem? i => integral(f, x)$F + empty? rest(l := [mkPrimh(f, x, h, comp) for f in expand i]) => first l + l + +-- replace tan(a/2)**2 by (1-cos a)/(1+cos a) if tan(a/2) is in ltan + halfangle a == + a := 2 * a + (1 - cos a) / (1 + cos a) + + Khalf k == + a := 2 * first argument k + sin(a) / (1 + cos a) + +-- ltan = list of tangents in the integrand after real normalization + postSubst(f, lv, lk, comp, ltan, x) == + for v in lv for k in lk repeat + if ((u := retractIfCan(v)@Union(K, "failed")) case K) then + if has?(operator(kk := u::K), ALGOP) then + f := univariate(f, kk, minPoly kk) (kk::F) + f := eval(f, [u::K], [k::F]) + if not(comp or empty? ltan) then + ltemp := [tan2temp k for k in ltan] + f := eval(f, ltan, [k::F for k in ltemp]) + f := eval(f, TANTEMP, 2, halfangle) + f := eval(f, ltemp, [Khalf k for k in ltemp]) + removeConstantTerm(f, x) + +-- can handle a single unnested tangent directly, otherwise go complex for now +-- l is the list of all the kernels containing x +-- ltan is the list of all the tangents in l + goComplex?(rt, l, ltan) == + empty? ltan => rt + not empty? rest rest l + + integrate(f, x) == + not real? f => complexIntegrate(f, x) + f := distribute(f, x::F) + tf := [k for k in tower f | member?(x, variables(k::F)@List(SE))]$List(K) + ltf := select(is?(operator #1, "tan"::SE), tf) + ht := any?(has?(operator #1, "htrig"), tf) + rec := rischNormalize(realElementary(f, x), x) + g := rootSimp(rec.func) + tg := [k for k in tower g | member?(x, variables(k::F))]$List(K) + ltg := select(is?(operator #1, "tan"::SE), tg) + rtg := any?(has?(operator #1, "rtrig"), tg) + el := any?(has?(operator #1, "elem"), tg) + i:IR + if (comp := goComplex?(rtg, tg, ltg)) then + i := map(FG2F, lfintegrate(trigs2explogs(F2FG g, + [K2KG k for k in tf | is?(k, "tan"::SE) or + is?(k, "cot"::SE)], [x]), x)) + else i := lfintegrate(g, x) + ltg := setDifference(ltg, ltf) -- tan's added by normalization + (u := rinteg(i, f, x, el and ht, comp)) case F => + postSubst(u::F, rec.vals, rec.kers, comp, ltg, x) + [postSubst(h, rec.vals, rec.kers, comp, ltg, x) for h in u::List(F)] + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +-- SPAD files for the integration world should be compiled in the +-- following order: +-- +-- intaux rderf intrf curve curvepkg divisor pfo +-- intalg intaf EFSTRUC rdeef intef irexpand integrat + +<<package FSCINT FunctionSpaceComplexIntegration>> +<<package FSINT FunctionSpaceIntegration>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |