aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/gpgcd.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-04-03 04:23:42 +0000
committerdos-reis <gdr@axiomatics.org>2008-04-03 04:23:42 +0000
commit001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532 (patch)
treeda9e2fe5d81ff4cd7709d12e44b8c3e348b8a8e3 /src/algebra/gpgcd.spad.pamphlet
parenta7bab9a6c2070d05e2dbd256ce455079c8ced385 (diff)
downloadopen-axiom-001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532.tar.gz
Replace `^=' with `~='.
Diffstat (limited to 'src/algebra/gpgcd.spad.pamphlet')
-rw-r--r--src/algebra/gpgcd.spad.pamphlet24
1 files changed, 12 insertions, 12 deletions
diff --git a/src/algebra/gpgcd.spad.pamphlet b/src/algebra/gpgcd.spad.pamphlet
index bf758915..85f20722 100644
--- a/src/algebra/gpgcd.spad.pamphlet
+++ b/src/algebra/gpgcd.spad.pamphlet
@@ -139,7 +139,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
=> g*gcd(c1,c2)::SUPP -- divdes them both, so is the gcd
v:=variables g -- there can be at most these variables in answer
v1:=setDifference(vp1,v)
- if #v1 ^= 0 then
+ if #v1 ~= 0 then
g:=recursivelyGCDCoefficients(g,v,p1,v1)
-- one? g => return gcd(c1,c2)::SUPP
(g = 1) => return gcd(c1,c2)::SUPP
@@ -222,7 +222,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
g:=monomial(lcp,degree gR)+map(#1::P,reductum gR)
cf:=monomial(lcp,degree cfR)+map(#1::P,reductum cfR)
p:=lcp*p -- impose leaidng coefficient of p on each factor
- while lv ^= [] repeat
+ while lv ~= [] repeat
v:=first lv
r:=first lr
lv:=rest lv
@@ -243,7 +243,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
g:=g+pn*first step
cf:=cf+pn*second step
pn:=pn*prime
- thisp ^= g*cf => return "failed"
+ thisp ~= g*cf => return "failed"
g
recursivelyGCDCoefficients(g:SUPP,v:List OV,p:SUPP,pv:List OV) ==
mv:=first pv -- take each coefficient w.r.t. mv
@@ -256,7 +256,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
else g:=recursivelyGCDCoefficients(p,v,p1,pv)
-- one? g => return 1
(g = 1) => return 1
- g^=oldg =>
+ g~=oldg =>
oldv:=v
v:=variables g
pv:=setUnion(pv,setDifference(v,oldv))
@@ -265,7 +265,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
#lv = 0 => p1
lr:=[ randomR() for vv in lv]
dg:=degree p1
- while dg ^= degree (ans:= map(eval(#1,lv,lr),p1)) repeat
+ while dg ~= degree (ans:= map(eval(#1,lv,lr),p1)) repeat
lr:=[ randomR() for vv in lv]
ans
-- eval(p1:SUPP,lv:List OV,lr:List R) == map(eval(#1,lv,lr),p1)
@@ -305,9 +305,9 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD range:=2*range
--JHD lval:=[(random()$I rem (2*range) - range)::R for i in 1..nvr]
--JHD uf1:SUPR:=univariate eval(p1,lvr,lval)
---JHD degree uf1 ^= d1 => "new point"
+--JHD degree uf1 ~= d1 => "new point"
--JHD uf2:SUPR:=univariate eval(p2,lvr,lval)
---JHD degree uf2 ^= d2 => "new point"
+--JHD degree uf2 ~= d2 => "new point"
--JHD u:=gcd(uf1,uf2)
--JHD du:=degree u
--JHD --the univariate gcd is 1
@@ -324,7 +324,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD dd=d1 =>
--JHD if ^((f:=p2 exquo p1) case "failed") then
--JHD return [[u],lval,p1]$UTerm
---JHD if dd^=d2 then dd:=(dd-1)::NNI
+--JHD if dd~=d2 then dd:=(dd-1)::NNI
--JHD
--JHD dd=d2 =>
--JHD if ^((f:=p1 exquo p2) case "failed") then
@@ -369,7 +369,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD (gd1,gd2):=(l,l)
--JHD ul:=univariate(eval(l,lvar1,lval))
--JHD dl:=degree ul
---JHD if degree gcd(ul,differentiate ul) ^=0 then
+--JHD if degree gcd(ul,differentiate ul) ~=0 then
--JHD newchoice:=good(l,lvar.rest)
--JHD ul:=newchoice.upol
--JHD lval:=newchoice.inval
@@ -381,7 +381,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD d:SUPR:=gcd(cons(ul,ulist))
--JHD if degree d =0 then return gd1
--JHD lquo:=(ul exquo d)::SUPR
---JHD if degree lquo ^=0 then
+--JHD if degree lquo ~=0 then
--JHD lgcd:=gcd(cons(leadingCoefficient univariate(l,x),lcpol))
--JHD gd2:=lift(l,d,lquo,lgcd,lvar,ldeg,lval)
--JHD l:=gd2
@@ -546,7 +546,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD df:=degree(f,x)
--JHD leadlist:List(P):=[]
--JHD
---JHD if lgcd^=1$P then
+--JHD if lgcd~=1$P then
--JHD leadpol:=true
--JHD f:=lgcd*f
--JHD ldeg:=[n0+n1 for n0 in ldeg for n1 in degree(lgcd,lvar)]
@@ -558,7 +558,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where
--JHD lg:=imposelc([d,uf],lvar,lval,leadlist)
--JHD plist:=lifting(univariate(f,x),lvar,lg,lval,leadlist,ldeg)::List P
--JHD (p0:P,p1:P):=(plist.first,plist.2)
---JHD if univariate eval(p0,rest lvar,lval) ^= lg.first then
+--JHD if univariate eval(p0,rest lvar,lval) ~= lg.first then
--JHD (p0,p1):=(p1,p0)
--JHD ^leadpol => p0
--JHD cprim:=contprim([p0])