diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/gbeuclid.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/gbeuclid.spad.pamphlet')
-rw-r--r-- | src/algebra/gbeuclid.spad.pamphlet | 596 |
1 files changed, 596 insertions, 0 deletions
diff --git a/src/algebra/gbeuclid.spad.pamphlet b/src/algebra/gbeuclid.spad.pamphlet new file mode 100644 index 00000000..0ff28e44 --- /dev/null +++ b/src/algebra/gbeuclid.spad.pamphlet @@ -0,0 +1,596 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra gbeuclid.spad} +\author{Rudiger Gebauer, Michael Moeller} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\begin{verbatim} +--------- EUCLIDEAN GROEBNER BASIS PACKAGE --------------- +--------- +---------- version 12.01.1986 +--------- +--------- Example to call euclideanGroebner: +--------- +--------- a1:DMP[y,x]I:= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1) +--------- a2:DMP[y,x]I:= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1) +--------- a3:DMP[y,x]I:= (3*x**3 + 2*x**2) + y*(x**3 + x**2) +--------- +--------- an:=[a1,a2,a3] +--------- +--------- euclideanGroebner(an,info) +--------- +------------------------------------------------------------------------- +--------- +--------- euclideanGroebner -> calculate weak euclGbasis +--------- +--------- all reductions are TOTAL reductions +--------- +--------- use string " redcrit " and you get the reduced critpairs +--------- printed +--------- +--------- use string " info " and you get information about +--------- +--------- ci => Leading monomial for critpair calculation +--------- tci => Number of terms of polynomial i +--------- cj => Leading monomial for critpair calculation +--------- tcj => Number of terms of polynomial j +--------- c => Leading monomial of critpair polynomial +--------- tc => Number of terms of critpair polynomial +--------- rc => Leading monomial of redcritpair polynomial +--------- trc => Number of terms of redcritpair polynomial +--------- tH => Number of polynomials in reduction list H +--------- tD => Number of critpairs still to do +--------- +\end{verbatim} +\section{package GBEUCLID EuclideanGroebnerBasisPackage} +<<package GBEUCLID EuclideanGroebnerBasisPackage>>= +)abbrev package GBEUCLID EuclideanGroebnerBasisPackage +++ Authors: Gebauer, Moeller +++ Date Created: 12-1-86 +++ Date Last Updated: 2-28-91 +++ Basic Functions: +++ Related Constructors: Ideal, IdealDecompositionPackage, GroebnerPackage +++ Also See: +++ AMS Classifications: +++ Keywords: groebner basis, polynomial ideal, euclidean domain +++ References: +++ Description: \spadtype{EuclideanGroebnerBasisPackage} computes groebner +++ bases for polynomial ideals over euclidean domains. +++ The basic computation provides +++ a distinguished set of generators for these ideals. +++ This basis allows an easy test for membership: the operation +++ \spadfun{euclideanNormalForm} returns zero on ideal members. The string +++ "info" and "redcrit" can be given as additional args to provide +++ incremental information during the computation. If "info" is given, +++ a computational summary is given for each s-polynomial. If "redcrit" +++ is given, the reduced critical pairs are printed. The term ordering +++ is determined by the polynomial type used. Suggested types include +++ \spadtype{DistributedMultivariatePolynomial}, +++ \spadtype{HomogeneousDistributedMultivariatePolynomial}, +++ \spadtype{GeneralDistributedMultivariatePolynomial}. + +EuclideanGroebnerBasisPackage(Dom, Expon, VarSet, Dpol): T == C where + + Dom: EuclideanDomain + Expon: OrderedAbelianMonoidSup + VarSet: OrderedSet + Dpol: PolynomialCategory(Dom, Expon, VarSet) + + T== with + + euclideanNormalForm: (Dpol, List(Dpol) ) -> Dpol + ++ euclideanNormalForm(poly,gb) reduces the polynomial poly modulo the + ++ precomputed groebner basis gb giving a canonical representative + ++ of the residue class. + euclideanGroebner: List(Dpol) -> List(Dpol) + ++ euclideanGroebner(lp) computes a groebner basis for a polynomial ideal + ++ over a euclidean domain generated by the list of polynomials lp. + euclideanGroebner: (List(Dpol), String) -> List(Dpol) + ++ euclideanGroebner(lp, infoflag) computes a groebner basis + ++ for a polynomial ideal over a euclidean domain + ++ generated by the list of polynomials lp. + ++ During computation, additional information is printed out + ++ if infoflag is given as + ++ either "info" (for summary information) or + ++ "redcrit" (for reduced critical pairs) + euclideanGroebner: (List(Dpol), String, String ) -> List(Dpol) + ++ euclideanGroebner(lp, "info", "redcrit") computes a groebner basis + ++ for a polynomial ideal generated by the list of polynomials lp. + ++ If the second argument is "info", a summary is given of the critical pairs. + ++ If the third argument is "redcrit", critical pairs are printed. + C== add + Ex ==> OutputForm + lc ==> leadingCoefficient + red ==> reductum + + import OutputForm + + ------ Definition list of critPair + ------ lcmfij is now lcm of headterm of poli and polj + ------ lcmcij is now lcm of of lc poli and lc polj + + critPair ==>Record(lcmfij: Expon, lcmcij: Dom, poli:Dpol, polj: Dpol ) + Prinp ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol, + tc:Integer,rc:Dpol,trc:Integer,tH:Integer,tD:Integer) + + ------ Definition of intermediate functions + + strongGbasis: (List(Dpol), Integer, Integer) -> List(Dpol) + eminGbasis: List(Dpol) -> List(Dpol) + ecritT: (critPair ) -> Boolean + ecritM: (Expon, Dom, Expon, Dom) -> Boolean + ecritB: (Expon, Dom, Expon, Dom, Expon, Dom) -> Boolean + ecrithinH: (Dpol, List(Dpol)) -> Boolean + ecritBonD: (Dpol, List(critPair)) -> List(critPair) + ecritMTondd1:(List(critPair)) -> List(critPair) + ecritMondd1:(Expon, Dom, List(critPair)) -> List(critPair) + crithdelH: (Dpol, List(Dpol)) -> List(Dpol) + eupdatF: (Dpol, List(Dpol) ) -> List(Dpol) + updatH: (Dpol, List(Dpol), List(Dpol), List(Dpol) ) -> List(Dpol) + sortin: (Dpol, List(Dpol) ) -> List(Dpol) + eRed: (Dpol, List(Dpol), List(Dpol) ) -> Dpol + ecredPol: (Dpol, List(Dpol) ) -> Dpol + esPol: (critPair) -> Dpol + updatD: (List(critPair), List(critPair)) -> List(critPair) + lepol: Dpol -> Integer + prinshINFO : Dpol -> Void + prindINFO: (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer + prinpolINFO: List(Dpol) -> Void + prinb: Integer -> Void + + ------ MAIN ALGORITHM GROEBNER ------------------------ + euclideanGroebner( Pol: List(Dpol) ) == + eminGbasis(strongGbasis(Pol,0,0)) + + euclideanGroebner( Pol: List(Dpol), xx1: String) == + xx1 = "redcrit" => + eminGbasis(strongGbasis(Pol,1,0)) + xx1 = "info" => + eminGbasis(strongGbasis(Pol,2,1)) + print(" "::Ex) + print("WARNING: options are - redcrit and/or info - "::Ex) + print(" you didn't type them correct"::Ex) + print(" please try again"::Ex) + print(" "::Ex) + [] + + euclideanGroebner( Pol: List(Dpol), xx1: String, xx2: String) == + (xx1 = "redcrit" and xx2 = "info") or + (xx1 = "info" and xx2 = "redcrit") => + eminGbasis(strongGbasis(Pol,1,1)) + xx1 = "redcrit" and xx2 = "redcrit" => + eminGbasis(strongGbasis(Pol,1,0)) + xx1 = "info" and xx2 = "info" => + eminGbasis(strongGbasis(Pol,2,1)) + print(" "::Ex) + print("WARNING: options are - redcrit and/or info - "::Ex) + print(" you didn't type them correct"::Ex) + print(" please try again "::Ex) + print(" "::Ex) + [] + + ------ calculate basis + + strongGbasis(Pol: List(Dpol),xx1: Integer, xx2: Integer ) == + dd1, D : List(critPair) + + --------- create D and Pol + + Pol1:= sort( (degree #1 > degree #2) or + ((degree #1 = degree #2 ) and + sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), + Pol) + Pol:= [first(Pol1)] + H:= Pol + Pol1:= rest(Pol1) + D:= nil + while ^null Pol1 repeat + h:= first(Pol1) + Pol1:= rest(Pol1) + en:= degree(h) + lch:= lc h + dd1:= [[sup(degree(x), en), lcm(leadingCoefficient x, lch), x, h]$critPair + for x in Pol] + D:= updatD(ecritMTondd1(sort((#1.lcmfij < #2.lcmfij) or + (( #1.lcmfij = #2.lcmfij ) and + ( sizeLess?(#1.lcmcij,#2.lcmcij)) ), + dd1)), ecritBonD(h,D)) + Pol:= cons(h, eupdatF(h, Pol)) + ((en = degree(first(H))) and (leadingCoefficient(h) = leadingCoefficient(first(H)) ) ) => + " go to top of while " + H:= updatH(h,H,crithdelH(h,H),[h]) + H:= sort((degree #1 > degree #2) or + ((degree #1 = degree #2 ) and + sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H) + D:= sort((#1.lcmfij < #2.lcmfij) or + (( #1.lcmfij = #2.lcmfij ) and + ( sizeLess?(#1.lcmcij,#2.lcmcij)) ) ,D) + xx:= xx2 + + -------- loop + + while ^null D repeat + D0:= first D + ep:=esPol(D0) + D:= rest(D) + eh:= ecredPol(eRed(ep,H,H),H) + if xx1 = 1 then + prinshINFO(eh) + eh = 0 => + if xx2 = 1 then + ala:= prindINFO(D0,ep,eh,#H, #D, xx) + xx:= 2 + " go to top of while " + eh := unitCanonical eh + e:= degree(eh) + leh:= lc eh + dd1:= [[sup(degree(x), e), lcm(leadingCoefficient x, leh), x, eh]$critPair + for x in Pol] + D:= updatD(ecritMTondd1(sort( (#1.lcmfij < + #2.lcmfij) or (( #1.lcmfij = #2.lcmfij ) and + ( sizeLess?(#1.lcmcij,#2.lcmcij)) ), dd1)), ecritBonD(eh,D)) + Pol:= cons(eh,eupdatF(eh,Pol)) + ^ecrithinH(eh,H) or + ((e = degree(first(H))) and (leadingCoefficient(eh) = leadingCoefficient(first(H)) ) ) => + if xx2 = 1 then + ala:= prindINFO(D0,ep,eh,#H, #D, xx) + xx:= 2 + " go to top of while " + H:= updatH(eh,H,crithdelH(eh,H),[eh]) + H:= sort( (degree #1 > degree #2) or + ((degree #1 = degree #2 ) and + sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H) + if xx2 = 1 then + ala:= prindINFO(D0,ep,eh,#H, #D, xx) + xx:= 2 + " go to top of while " + if xx2 = 1 then + prinpolINFO(Pol) + print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex) + if xx1 = 1 and xx2 ^= 1 then + print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex) + H + + -------------------------------------- + + --- erase multiple of e in D2 using crit M + + ecritMondd1(e: Expon, c: Dom, D2: List(critPair))== + null D2 => nil + x:= first(D2) + ecritM(e,c, x.lcmfij, lcm(leadingCoefficient(x.poli), leadingCoefficient(x.polj))) + => ecritMondd1(e, c, rest(D2)) + cons(x, ecritMondd1(e, c, rest(D2))) + + ------------------------------- + + ecredPol(h: Dpol, F: List(Dpol) ) == + h0:Dpol:= 0 + null F => h + while h ^= 0 repeat + h0:= h0 + monomial(leadingCoefficient(h),degree(h)) + h:= eRed(red(h), F, F) + h0 + ---------------------------- + + --- reduce dd1 using crit T and crit M + + ecritMTondd1(dd1: List(critPair))== + null dd1 => nil + f1:= first(dd1) + s1:= #(dd1) + cT1:= ecritT(f1) + s1= 1 and cT1 => nil + s1= 1 => dd1 + e1:= f1.lcmfij + r1:= rest(dd1) + f2:= first(r1) + e1 = f2.lcmfij and f1.lcmcij = f2.lcmcij => + cT1 => ecritMTondd1(cons(f1, rest(r1))) + ecritMTondd1(r1) + dd1 := ecritMondd1(e1, f1.lcmcij, r1) + cT1 => ecritMTondd1(dd1) + cons(f1, ecritMTondd1(dd1)) + + ----------------------------- + + --- erase elements in D fullfilling crit B + + ecritBonD(h:Dpol, D: List(critPair))== + null D => nil + x:= first(D) + x1:= x.poli + x2:= x.polj + ecritB(degree(h), leadingCoefficient(h), degree(x1),leadingCoefficient(x1),degree(x2),leadingCoefficient(x2)) => + ecritBonD(h, rest(D)) + cons(x, ecritBonD(h, rest(D))) + + ----------------------------- + + --- concat F and h and erase multiples of h in F + + eupdatF(h: Dpol, F: List(Dpol)) == + null F => nil + f1:= first(F) + ecritM(degree h, leadingCoefficient(h), degree f1, leadingCoefficient(f1)) + => eupdatF(h, rest(F)) + cons(f1, eupdatF(h, rest(F))) + + ----------------------------- + --- concat H and h and erase multiples of h in H + + updatH(h: Dpol, H: List(Dpol), Hh: List(Dpol), Hhh: List(Dpol)) == + null H => append(Hh,Hhh) + h1:= first(H) + hlcm:= sup(degree(h1), degree(h)) + plc:= extendedEuclidean(leadingCoefficient(h), leadingCoefficient(h1)) + hp:= monomial(plc.coef1,subtractIfCan(hlcm, degree(h))::Expon)*h + + monomial(plc.coef2,subtractIfCan(hlcm, degree(h1))::Expon)*h1 + (ecrithinH(hp, Hh) and ecrithinH(hp, Hhh)) => + hpp:= append(rest(H),Hh) + hp:= ecredPol(eRed(hp,hpp,hpp),hpp) + updatH(h, rest(H), crithdelH(hp,Hh),cons(hp,crithdelH(hp,Hhh))) + updatH(h, rest(H), Hh,Hhh) + + -------------------------------------------------- + ---- delete elements in cons(h,H) + + crithdelH(h: Dpol, H: List(Dpol))== + null H => nil + h1:= first(H) + dh1:= degree h1 + dh:= degree h + ecritM(dh, lc h, dh1, lc h1) => crithdelH(h, rest(H)) + dh1 = sup(dh,dh1) => + plc:= extendedEuclidean( lc h1, lc h) + cons(plc.coef1*h1 + monomial(plc.coef2,subtractIfCan(dh1,dh)::Expon)*h, + crithdelH(h,rest(H))) + cons(h1, crithdelH(h,rest(H))) + + eminGbasis(F: List(Dpol)) == + null F => nil + newbas := eminGbasis rest F + cons(ecredPol( first(F), newbas),newbas) + + ------------------------------------------------ + --- does h belong to H + + ecrithinH(h: Dpol, H: List(Dpol))== + null H => true + h1:= first(H) + ecritM(degree h1, lc h1, degree h, lc h) => false + ecrithinH(h, rest(H)) + + ----------------------------- + --- calculate euclidean S-polynomial of a critical pair + + esPol(p:critPair)== + Tij := p.lcmfij + fi := p.poli + fj := p.polj + lij:= lcm(leadingCoefficient(fi), leadingCoefficient(fj)) + red(fi)*monomial((lij exquo leadingCoefficient(fi))::Dom, + subtractIfCan(Tij, degree fi)::Expon) - + red(fj)*monomial((lij exquo leadingCoefficient(fj))::Dom, + subtractIfCan(Tij, degree fj)::Expon) + + ---------------------------- + + --- euclidean reduction mod F + + eRed(s: Dpol, H: List(Dpol), Hh: List(Dpol)) == + ( s = 0 or null H ) => s + f1:= first(H) + ds:= degree s + lf1:= leadingCoefficient(f1) + ls:= leadingCoefficient(s) + e: Union(Expon, "failed") + (((e:= subtractIfCan(ds, degree f1)) case "failed" ) or sizeLess?(ls, lf1) ) => + eRed(s, rest(H), Hh) + sdf1:= divide(ls, lf1) + q1:= sdf1.quotient + sdf1.remainder = 0 => + eRed(red(s) - monomial(q1,e)*reductum(f1), Hh, Hh) + eRed(s -(monomial(q1, e)*f1), rest(H), Hh) + + ---------------------------- + + --- crit T true, if e1 and e2 are disjoint + + ecritT(p: critPair) == + pi:= p.poli + pj:= p.polj + ci:= lc pi + cj:= lc pj + (p.lcmfij = degree pi + degree pj) and (p.lcmcij = ci*cj) + + ---------------------------- + + --- crit M - true, if lcm#2 multiple of lcm#1 + + ecritM(e1: Expon, c1: Dom, e2: Expon, c2: Dom) == + en: Union(Expon, "failed") + ((en:=subtractIfCan(e2, e1)) case "failed") or + ((c2 exquo c1) case "failed") => false + true + ---------------------------- + + --- crit B - true, if eik is a multiple of eh and eik ^equal + --- lcm(eh,ei) and eik ^equal lcm(eh,ek) + + ecritB(eh:Expon, ch: Dom, ei:Expon, ci: Dom, ek:Expon, ck: Dom) == + eik:= sup(ei, ek) + cik:= lcm(ci, ck) + ecritM(eh, ch, eik, cik) and + ^ecritM(eik, cik, sup(ei, eh), lcm(ci, ch)) and + ^ecritM(eik, cik, sup(ek, eh), lcm(ck, ch)) + + ------------------------------- + + --- reduce p1 mod lp + + euclideanNormalForm(p1: Dpol, lp: List(Dpol))== + eRed(p1, lp, lp) + + --------------------------------- + + --- insert element in sorted list + + sortin(p1: Dpol, lp: List(Dpol))== + null lp => [p1] + f1:= first(lp) + elf1:= degree(f1) + ep1:= degree(p1) + ((elf1 < ep1) or ((elf1 = ep1) and + sizeLess?(leadingCoefficient(f1),leadingCoefficient(p1)))) => + cons(f1,sortin(p1, rest(lp))) + cons(p1,lp) + + updatD(D1: List(critPair), D2: List(critPair)) == + null D1 => D2 + null D2 => D1 + dl1:= first(D1) + dl2:= first(D2) + (dl1.lcmfij < dl2.lcmfij) => cons(dl1, updatD(D1.rest, D2)) + cons(dl2, updatD(D1, D2.rest)) + + ---- calculate number of terms of polynomial + + lepol(p1:Dpol)== + n: Integer + n:= 0 + while p1 ^= 0 repeat + n:= n + 1 + p1:= red(p1) + n + + ---- print blanc lines + + prinb(n: Integer)== + for i in 1..n repeat messagePrint(" ") + + ---- print reduced critpair polynom + + prinshINFO(h: Dpol)== + prinb(2) + messagePrint(" reduced Critpair - Polynom :") + prinb(2) + print(h::Ex) + prinb(2) + + ------------------------------- + + ---- print info string + + prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer, + i2:Integer, n:Integer) == + ll: List Prinp + a: Dom + cpi:= cp.poli + cpj:= cp.polj + if n = 1 then + prinb(1) + messagePrint("you choose option -info- ") + messagePrint("abbrev. for the following information strings are") + messagePrint(" ci => Leading monomial for critpair calculation") + messagePrint(" tci => Number of terms of polynomial i") + messagePrint(" cj => Leading monomial for critpair calculation") + messagePrint(" tcj => Number of terms of polynomial j") + messagePrint(" c => Leading monomial of critpair polynomial") + messagePrint(" tc => Number of terms of critpair polynomial") + messagePrint(" rc => Leading monomial of redcritpair polynomial") + messagePrint(" trc => Number of terms of redcritpair polynomial") + messagePrint(" tF => Number of polynomials in reduction list F") + messagePrint(" tD => Number of critpairs still to do") + prinb(4) + n:= 2 + prinb(1) + a:= 1 + ph = 0 => + ps = 0 => + ll:= [[monomial(a,degree(cpi)),lepol(cpi),monomial(a,degree(cpj)), + lepol(cpj),ps,0,ph,0,i1,i2]$Prinp] + print(ll::Ex) + prinb(1) + n + ll:= [[monomial(a,degree(cpi)),lepol(cpi), + monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)), + lepol(ps), ph,0,i1,i2]$Prinp] + print(ll::Ex) + prinb(1) + n + ll:= [[monomial(a,degree(cpi)),lepol(cpi), + monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)), + lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp] + print(ll::Ex) + prinb(1) + n + + ------------------------------- + + ---- print the groebner basis polynomials + + prinpolINFO(pl: List(Dpol))== + n:Integer + n:= #pl + prinb(1) + n = 1 => + print(" There is 1 Groebner Basis Polynomial "::Ex) + prinb(2) + print(" There are "::Ex) + prinb(1) + print(n::Ex) + prinb(1) + print(" Groebner Basis Polynomials. "::Ex) + prinb(2) + + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package GBEUCLID EuclideanGroebnerBasisPackage>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |