diff options
author | dos-reis <gdr@axiomatics.org> | 2008-05-11 03:28:45 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-05-11 03:28:45 +0000 |
commit | 51422a0c6bc0128cd5635a01c402ef56ad4ed770 (patch) | |
tree | d7f4cb13310b177e1691acd1307eb420d70b2546 /src/algebra/fff.spad.pamphlet | |
parent | d2412069e4fc43a4bc6cc28ce4c57e02f8baee41 (diff) | |
download | open-axiom-51422a0c6bc0128cd5635a01c402ef56ad4ed770.tar.gz |
* interp/iterator.boot (compRepeatOrCollect): Don't iterator
variables and variables declared in a loop are local to that loop.
* interp/g-error.boot (needsToSplitMessage): New.
(errorSupervisor): Use it.
* interp/compiler.boot (compSymbol): Highlight erron=eous symbol.
* interp/wi1.boot (stackMessage): Remove duplicate.
* algebra/ffcat.spad.pamphlet (FiniteFieldCategory): Tidy.
* algebra/fff.spad.pamphlet (FiniteFieldFunctions): Likewie.
* algebra/groebsol.spad.pamphlet (GroebnerSolve): Likewise.
* algebra/intfact.spad.pamphlet (IntegerRoots): Likewise.
* algebra/mkfunc.spad.pamphlet (InputForm): Likewise.
* algebra/numtheor.spad.pamphlet (IntegerNumberTheoryFunctions):
Likewise.
* algebra/permgrps.spad.pamphlet (PermutationGroup): Likewise.
* algebra/random.spad.pamphlet (RandomFloatDistributions): Likewise.
* algebra/sgcf.spad.pamphlet
(SymmetricGroupCombinatoricFunctions): Likewise.
* algebra/triset.spad.pamphlet (PolynomialSetUtilitiesPackage):
Likewise.
* algebra/twofact.spad.pamphlet (TwoFactorize): Likewise.
Diffstat (limited to 'src/algebra/fff.spad.pamphlet')
-rw-r--r-- | src/algebra/fff.spad.pamphlet | 4 |
1 files changed, 3 insertions, 1 deletions
diff --git a/src/algebra/fff.spad.pamphlet b/src/algebra/fff.spad.pamphlet index 0cfca8d4..3eb3d683 100644 --- a/src/algebra/fff.spad.pamphlet +++ b/src/algebra/fff.spad.pamphlet @@ -115,10 +115,12 @@ FiniteFieldFunctions(GF): Exports == Implementation where p:=characteristic()$GF -- search of a suitable parameter k k:NNI:=0 + a:NNI + t1: PF(k*n+1) -- all that matters is the syntax of the type for i in 1..n-1 while (k=0) repeat if prime?(i*n+1) and not(p = (i*n+1)) then primitive?(q::PF(i*n+1))$PF(i*n+1) => - a:NNI:=1 + a := 1 k:=i t1:PF(k*n+1):=(q::PF(k*n+1))**n gcd(n,a:=discreteLog(q::PF(n*i+1))$PF(n*i+1))$I = 1 => |