aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/contfrac.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/contfrac.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/contfrac.spad.pamphlet')
-rw-r--r--src/algebra/contfrac.spad.pamphlet425
1 files changed, 425 insertions, 0 deletions
diff --git a/src/algebra/contfrac.spad.pamphlet b/src/algebra/contfrac.spad.pamphlet
new file mode 100644
index 00000000..2261d76c
--- /dev/null
+++ b/src/algebra/contfrac.spad.pamphlet
@@ -0,0 +1,425 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra contfrac.spad}
+\author{Stephen M. Watt, Clifton J. Williamson}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{domain CONTFRAC ContinuedFraction}
+<<domain CONTFRAC ContinuedFraction>>=
+)abbrev domain CONTFRAC ContinuedFraction
+++ Author: Stephen M. Watt
+++ Date Created: January 1987
+++ Change History:
+++ 11 April 1990
+++ 7 October 1991 -- SMW: Treat whole part specially. Added comments.
+++ Basic Operations:
+++ (Field), (Algebra),
+++ approximants, complete, continuedFraction, convergents, denominators,
+++ extend, numerators, partialDenominators, partialNumerators,
+++ partialQuotients, reducedContinuedFraction, reducedForm, wholePart
+++ Related Constructors:
+++ Also See: Fraction
+++ AMS Classifications: 11A55 11J70 11K50 11Y65 30B70 40A15
+++ Keywords: continued fraction, convergent
+++ References:
+++ Description: \spadtype{ContinuedFraction} implements general
+++ continued fractions. This version is not restricted to simple,
+++ finite fractions and uses the \spadtype{Stream} as a
+++ representation. The arithmetic functions assume that the
+++ approximants alternate below/above the convergence point.
+++ This is enforced by ensuring the partial numerators and partial
+++ denominators are greater than 0 in the Euclidean domain view of \spad{R}
+++ (i.e. \spad{sizeLess?(0, x)}).
+
+
+ContinuedFraction(R): Exports == Implementation where
+ R : EuclideanDomain
+ Q ==> Fraction R
+ MT ==> MoebiusTransform Q
+ OUT ==> OutputForm
+
+ Exports ==> Join(Algebra R,Algebra Q,Field) with
+ continuedFraction: Q -> %
+ ++ continuedFraction(r) converts the fraction \spadvar{r} with
+ ++ components of type \spad{R} to a continued fraction over
+ ++ \spad{R}.
+
+ continuedFraction: (R, Stream R, Stream R) -> %
+ ++ continuedFraction(b0,a,b) constructs a continued fraction in
+ ++ the following way: if \spad{a = [a1,a2,...]} and \spad{b =
+ ++ [b1,b2,...]} then the result is the continued fraction
+ ++ \spad{b0 + a1/(b1 + a2/(b2 + ...))}.
+
+ reducedContinuedFraction: (R, Stream R) -> %
+ ++ reducedContinuedFraction(b0,b) constructs a continued
+ ++ fraction in the following way: if \spad{b = [b1,b2,...]}
+ ++ then the result is the continued fraction \spad{b0 + 1/(b1 +
+ ++ 1/(b2 + ...))}. That is, the result is the same as
+ ++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.
+
+ partialNumerators: % -> Stream R
+ ++ partialNumerators(x) extracts the numerators in \spadvar{x}.
+ ++ That is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
+ ++ [b1,b2,b3,...])}, then \spad{partialNumerators(x) =
+ ++ [a1,a2,a3,...]}.
+
+ partialDenominators: % -> Stream R
+ ++ partialDenominators(x) extracts the denominators in
+ ++ \spadvar{x}. That is, if \spad{x = continuedFraction(b0,
+ ++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
+ ++ \spad{partialDenominators(x) = [b1,b2,b3,...]}.
+
+ partialQuotients: % -> Stream R
+ ++ partialQuotients(x) extracts the partial quotients in
+ ++ \spadvar{x}. That is, if \spad{x = continuedFraction(b0,
+ ++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
+ ++ \spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.
+
+ wholePart: % -> R
+ ++ wholePart(x) extracts the whole part of \spadvar{x}. That
+ ++ is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
+ ++ [b1,b2,b3,...])}, then \spad{wholePart(x) = b0}.
+
+ reducedForm: % -> %
+ ++ reducedForm(x) puts the continued fraction \spadvar{x} in
+ ++ reduced form, i.e. the function returns an equivalent
+ ++ continued fraction of the form
+ ++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.
+
+ approximants: % -> Stream Q
+ ++ approximants(x) returns the stream of approximants of the
+ ++ continued fraction \spadvar{x}. If the continued fraction is
+ ++ finite, then the stream will be infinite and periodic with
+ ++ period 1.
+
+ convergents: % -> Stream Q
+ ++ convergents(x) returns the stream of the convergents of the
+ ++ continued fraction \spadvar{x}. If the continued fraction is
+ ++ finite, then the stream will be finite.
+
+ numerators: % -> Stream R
+ ++ numerators(x) returns the stream of numerators of the
+ ++ approximants of the continued fraction \spadvar{x}. If the
+ ++ continued fraction is finite, then the stream will be finite.
+
+ denominators: % -> Stream R
+ ++ denominators(x) returns the stream of denominators of the
+ ++ approximants of the continued fraction \spadvar{x}. If the
+ ++ continued fraction is finite, then the stream will be finite.
+
+ extend: (%,Integer) -> %
+ ++ extend(x,n) causes the first \spadvar{n} entries in the
+ ++ continued fraction \spadvar{x} to be computed. Normally
+ ++ entries are only computed as needed.
+
+ complete: % -> %
+ ++ complete(x) causes all entries in \spadvar{x} to be computed.
+ ++ Normally entries are only computed as needed. If \spadvar{x}
+ ++ is an infinite continued fraction, a user-initiated interrupt is
+ ++ necessary to stop the computation.
+
+ Implementation ==> add
+
+ -- isOrdered ==> R is Integer
+ isOrdered ==> R has OrderedRing and R has multiplicativeValuation
+ canReduce? ==> isOrdered or R has additiveValuation
+
+ Rec ==> Record(num: R, den: R)
+ Str ==> Stream Rec
+ Rep := Record(value: Record(whole: R, fract: Str), reduced?: Boolean)
+
+ import Str
+
+ genFromSequence: Stream Q -> %
+ genReducedForm: (Q, Stream Q, MT) -> Stream Rec
+ genFractionA: (Stream R,Stream R) -> Stream Rec
+ genFractionB: (Stream R,Stream R) -> Stream Rec
+ genNumDen: (R,R, Stream Rec) -> Stream R
+
+ genApproximants: (R,R,R,R,Stream Rec) -> Stream Q
+ genConvergents: (R,R,R,R,Stream Rec) -> Stream Q
+ iGenApproximants: (R,R,R,R,Stream Rec) -> Stream Q
+ iGenConvergents: (R,R,R,R,Stream Rec) -> Stream Q
+
+ reducedForm c ==
+ c.reduced? => c
+ explicitlyFinite? c.value.fract =>
+ continuedFraction last complete convergents c
+ canReduce? => genFromSequence approximants c
+ error "Reduced form not defined for this continued fraction."
+
+ eucWhole(a: Q): R == numer a quo denom a
+
+ eucWhole0(a: Q): R ==
+ isOrdered =>
+ n := numer a
+ d := denom a
+ q := n quo d
+ r := n - q*d
+ if r < 0 then q := q - 1
+ q
+ eucWhole a
+
+ x = y ==
+ x := reducedForm x
+ y := reducedForm y
+
+ x.value.whole ^= y.value.whole => false
+
+ xl := x.value.fract; yl := y.value.fract
+
+ while not empty? xl and not empty? yl repeat
+ frst.xl.den ^= frst.yl.den => return false
+ xl := rst xl; yl := rst yl
+ empty? xl and empty? yl
+
+ continuedFraction q == q :: %
+
+ if isOrdered then
+ continuedFraction(wh,nums,dens) == [[wh,genFractionA(nums,dens)],false]
+
+ genFractionA(nums,dens) ==
+ empty? nums or empty? dens => empty()
+ n := frst nums
+ d := frst dens
+ n < 0 => error "Numerators must be greater than 0."
+ d < 0 => error "Denominators must be greater than 0."
+ concat([n,d]$Rec, delay genFractionA(rst nums,rst dens))
+ else
+ continuedFraction(wh,nums,dens) == [[wh,genFractionB(nums,dens)],false]
+
+ genFractionB(nums,dens) ==
+ empty? nums or empty? dens => empty()
+ n := frst nums
+ d := frst dens
+ concat([n,d]$Rec, delay genFractionB(rst nums,rst dens))
+
+ reducedContinuedFraction(wh,dens) ==
+ continuedFraction(wh, repeating [1], dens)
+
+ coerce(n:Integer):% == [[n::R,empty()], true]
+ coerce(r:R):% == [[r, empty()], true]
+
+ coerce(a: Q): % ==
+ wh := eucWhole0 a
+ fr := a - wh::Q
+ zero? fr => [[wh, empty()], true]
+
+ l : List Rec := empty()
+ n := numer fr
+ d := denom fr
+ while not zero? d repeat
+ qr := divide(n,d)
+ l := concat([1,qr.quotient],l)
+ n := d
+ d := qr.remainder
+ [[wh, construct rest reverse_! l], true]
+
+ characteristic() == characteristic()$Q
+
+
+ genFromSequence apps ==
+ lo := first apps; apps := rst apps
+ hi := first apps; apps := rst apps
+ while eucWhole0 lo ^= eucWhole0 hi repeat
+ lo := first apps; apps := rst apps
+ hi := first apps; apps := rst apps
+ wh := eucWhole0 lo
+ [[wh, genReducedForm(wh::Q, apps, moebius(1,0,0,1))], canReduce?]
+
+ genReducedForm(wh0, apps, mt) ==
+ lo: Q := first apps - wh0; apps := rst apps
+ hi: Q := first apps - wh0; apps := rst apps
+ lo = hi and zero? eval(mt, lo) => empty()
+ mt := recip mt
+ wlo := eucWhole eval(mt, lo)
+ whi := eucWhole eval(mt, hi)
+ while wlo ^= whi repeat
+ wlo := eucWhole eval(mt, first apps - wh0); apps := rst apps
+ whi := eucWhole eval(mt, first apps - wh0); apps := rst apps
+ concat([1,wlo], delay genReducedForm(wh0, apps, shift(mt, -wlo::Q)))
+
+ wholePart c == c.value.whole
+ partialNumerators c == map(#1.num, c.value.fract)$StreamFunctions2(Rec,R)
+ partialDenominators c == map(#1.den, c.value.fract)$StreamFunctions2(Rec,R)
+ partialQuotients c == concat(c.value.whole, partialDenominators c)
+
+ approximants c ==
+ empty? c.value.fract => repeating [c.value.whole::Q]
+ genApproximants(1,0,c.value.whole,1,c.value.fract)
+ convergents c ==
+ empty? c.value.fract => concat(c.value.whole::Q, empty())
+ genConvergents (1,0,c.value.whole,1,c.value.fract)
+ numerators c ==
+ empty? c.value.fract => concat(c.value.whole, empty())
+ genNumDen(1,c.value.whole,c.value.fract)
+ denominators c ==
+ genNumDen(0,1,c.value.fract)
+
+ extend(x,n) == (extend(x.value.fract,n); x)
+ complete(x) == (complete(x.value.fract); x)
+
+ iGenApproximants(pm2,qm2,pm1,qm1,fr) == delay
+ nd := frst fr
+ pm := nd.num*pm2 + nd.den*pm1
+ qm := nd.num*qm2 + nd.den*qm1
+ genApproximants(pm1,qm1,pm,qm,rst fr)
+
+ genApproximants(pm2,qm2,pm1,qm1,fr) ==
+ empty? fr => repeating [pm1/qm1]
+ concat(pm1/qm1,iGenApproximants(pm2,qm2,pm1,qm1,fr))
+
+ iGenConvergents(pm2,qm2,pm1,qm1,fr) == delay
+ nd := frst fr
+ pm := nd.num*pm2 + nd.den*pm1
+ qm := nd.num*qm2 + nd.den*qm1
+ genConvergents(pm1,qm1,pm,qm,rst fr)
+
+ genConvergents(pm2,qm2,pm1,qm1,fr) ==
+ empty? fr => concat(pm1/qm1, empty())
+ concat(pm1/qm1,iGenConvergents(pm2,qm2,pm1,qm1,fr))
+
+ genNumDen(m2,m1,fr) ==
+ empty? fr => concat(m1,empty())
+ concat(m1,delay genNumDen(m1,m2*frst(fr).num + m1*frst(fr).den,rst fr))
+
+ gen ==> genFromSequence
+ apx ==> approximants
+
+ c, d: %
+ a: R
+ q: Q
+ n: Integer
+
+ 0 == (0$R) :: %
+ 1 == (1$R) :: %
+
+ c + d == genFromSequence map(#1 + #2, apx c, apx d)
+ c - d == genFromSequence map(#1 - #2, apx c, rest apx d)
+ - c == genFromSequence map( - #1, rest apx c)
+ c * d == genFromSequence map(#1 * #2, apx c, apx d)
+ a * d == genFromSequence map( a * #1, apx d)
+ q * d == genFromSequence map( q * #1, apx d)
+ n * d == genFromSequence map( n * #1, apx d)
+ c / d == genFromSequence map(#1 / #2, apx c, rest apx d)
+ recip c ==(c = 0 => "failed";
+ genFromSequence map( 1 / #1, rest apx c))
+
+ showAll?: () -> Boolean
+ showAll?() ==
+ NULL(_$streamsShowAll$Lisp)$Lisp => false
+ true
+
+ zagRec(t:Rec):OUT == zag(t.num :: OUT,t.den :: OUT)
+
+ coerce(c:%): OUT ==
+ wh := c.value.whole
+ fr := c.value.fract
+ empty? fr => wh :: OUT
+ count : NonNegativeInteger := _$streamCount$Lisp
+ l : List OUT := empty()
+ for n in 1..count while not empty? fr repeat
+ l := concat(zagRec frst fr,l)
+ fr := rst fr
+ if showAll?() then
+ for n in (count + 1).. while explicitEntries? fr repeat
+ l := concat(zagRec frst fr,l)
+ fr := rst fr
+ if not explicitlyEmpty? fr then l := concat("..." :: OUT,l)
+ l := reverse_! l
+ e := reduce("+",l)
+ zero? wh => e
+ (wh :: OUT) + e
+
+@
+\section{package NCNTFRAC NumericContinuedFraction}
+<<package NCNTFRAC NumericContinuedFraction>>=
+)abbrev package NCNTFRAC NumericContinuedFraction
+++ Author: Clifton J. Williamson
+++ Date Created: 12 April 1990
+++ Change History:
+++ Basic Operations: continuedFraction
+++ Related Constructors: ContinuedFraction, Float
+++ Also See: Fraction
+++ AMS Classifications: 11J70 11A55 11K50 11Y65 30B70 40A15
+++ Keywords: continued fraction
+++ References:
+++ Description: \spadtype{NumericContinuedFraction} provides functions
+++ for converting floating point numbers to continued fractions.
+
+NumericContinuedFraction(F): Exports == Implementation where
+ F : FloatingPointSystem
+ CFC ==> ContinuedFraction Integer
+ I ==> Integer
+ ST ==> Stream I
+
+ Exports ==> with
+ continuedFraction: F -> CFC
+ ++ continuedFraction(f) converts the floating point number
+ ++ \spad{f} to a reduced continued fraction.
+
+ Implementation ==> add
+
+ cfc: F -> ST
+ cfc(a) == delay
+ aa := wholePart a
+ zero?(b := a - (aa :: F)) => concat(aa,empty()$ST)
+ concat(aa,cfc inv b)
+
+ continuedFraction a ==
+ aa := wholePart a
+ zero?(b := a - (aa :: F)) =>
+ reducedContinuedFraction(aa,empty()$ST)
+ if negative? b then (aa := aa - 1; b := b + 1)
+ reducedContinuedFraction(aa,cfc inv b)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<domain CONTFRAC ContinuedFraction>>
+<<package NCNTFRAC NumericContinuedFraction>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}