diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/algfact.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/algfact.spad.pamphlet')
-rw-r--r-- | src/algebra/algfact.spad.pamphlet | 346 |
1 files changed, 346 insertions, 0 deletions
diff --git a/src/algebra/algfact.spad.pamphlet b/src/algebra/algfact.spad.pamphlet new file mode 100644 index 00000000..3e90bb50 --- /dev/null +++ b/src/algebra/algfact.spad.pamphlet @@ -0,0 +1,346 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra algfact.spad} +\author{Patrizia Gianni, Manuel Bronstein} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package IALGFACT InnerAlgFactor} +<<package IALGFACT InnerAlgFactor>>= +)abbrev package IALGFACT InnerAlgFactor +++ Factorisation in a simple algebraic extension +++ Author: Patrizia Gianni +++ Date Created: ??? +++ Date Last Updated: 20 Jul 1988 +++ Description: +++ Factorization of univariate polynomials with coefficients in an +++ algebraic extension of a field over which we can factor UP's; +++ Keywords: factorization, algebraic extension, univariate polynomial + +InnerAlgFactor(F, UP, AlExt, AlPol): Exports == Implementation where + F : Field + UP : UnivariatePolynomialCategory F + AlPol: UnivariatePolynomialCategory AlExt + AlExt : Join(Field, CharacteristicZero, MonogenicAlgebra(F,UP)) + NUP ==> SparseUnivariatePolynomial UP + N ==> NonNegativeInteger + Z ==> Integer + FR ==> Factored UP + UPCF2 ==> UnivariatePolynomialCategoryFunctions2 + + + Exports ==> with + factor: (AlPol, UP -> FR) -> Factored AlPol + ++ factor(p, f) returns a prime factorisation of p; + ++ f is a factorisation map for elements of UP; + + Implementation ==> add + pnorm : AlPol -> UP + convrt : AlPol -> NUP + change : UP -> AlPol + perturbfactor: (AlPol, Z, UP -> FR) -> List AlPol + irrfactor : (AlPol, Z, UP -> FR) -> List AlPol + + + perturbfactor(f, k, fact) == + pol := monomial(1$AlExt,1)- + monomial(reduce monomial(k::F,1)$UP ,0) + newf := elt(f, pol) + lsols := irrfactor(newf, k, fact) + pol := monomial(1, 1) + + monomial(reduce monomial(k::F,1)$UP,0) + [elt(pp, pol) for pp in lsols] + + --- factorize the square-free parts of f --- + irrfactor(f, k, fact) == + degree(f) =$N 1 => [f] + newf := f + nn := pnorm f + --newval:RN:=1 + --pert:=false + --if ^ SqFr? nn then + -- pert:=true + -- newterm:=perturb(f) + -- newf:=newterm.ppol + -- newval:=newterm.pval + -- nn:=newterm.nnorm + listfact := factors fact nn + #listfact =$N 1 => + first(listfact).exponent =$Z 1 => [f] + perturbfactor(f, k + 1, fact) + listerm:List(AlPol):= [] + for pelt in listfact repeat + g := gcd(change(pelt.factor), newf) + newf := (newf exquo g)::AlPol + listerm := + pelt.exponent =$Z 1 => cons(g, listerm) + append(perturbfactor(g, k + 1, fact), listerm) + listerm + + factor(f, fact) == + sqf := squareFree f + unit(sqf) * _*/[_*/[primeFactor(pol, sqterm.exponent) + for pol in irrfactor(sqterm.factor, 0, fact)] + for sqterm in factors sqf] + + p := definingPolynomial()$AlExt + newp := map(#1::UP, p)$UPCF2(F, UP, UP, NUP) + + pnorm q == resultant(convrt q, newp) + change q == map(coerce, q)$UPCF2(F,UP,AlExt,AlPol) + + convrt q == + swap(map(lift, q)$UPCF2(AlExt, AlPol, + UP, NUP))$CommuteUnivariatePolynomialCategory(F, UP, NUP) + +@ +\section{package SAEFACT SimpleAlgebraicExtensionAlgFactor} +<<package SAEFACT SimpleAlgebraicExtensionAlgFactor>>= +)abbrev package SAEFACT SimpleAlgebraicExtensionAlgFactor +++ Factorisation in a simple algebraic extension; +++ Author: Patrizia Gianni +++ Date Created: ??? +++ Date Last Updated: ??? +++ Description: +++ Factorization of univariate polynomials with coefficients in an +++ algebraic extension of the rational numbers (\spadtype{Fraction Integer}). +++ Keywords: factorization, algebraic extension, univariate polynomial + +SimpleAlgebraicExtensionAlgFactor(UP,SAE,UPA):Exports==Implementation where + UP : UnivariatePolynomialCategory Fraction Integer + SAE : Join(Field, CharacteristicZero, + MonogenicAlgebra(Fraction Integer, UP)) + UPA: UnivariatePolynomialCategory SAE + + Exports ==> with + factor: UPA -> Factored UPA + ++ factor(p) returns a prime factorisation of p. + + Implementation ==> add + factor q == + factor(q, factor$RationalFactorize(UP) + )$InnerAlgFactor(Fraction Integer, UP, SAE, UPA) + +@ +\section{package RFFACT RationalFunctionFactor} +<<package RFFACT RationalFunctionFactor>>= +)abbrev package RFFACT RationalFunctionFactor +++ Factorisation in UP FRAC POLY INT +++ Author: Patrizia Gianni +++ Date Created: ??? +++ Date Last Updated: ??? +++ Description: +++ Factorization of univariate polynomials with coefficients which +++ are rational functions with integer coefficients. + +RationalFunctionFactor(UP): Exports == Implementation where + UP: UnivariatePolynomialCategory Fraction Polynomial Integer + + SE ==> Symbol + P ==> Polynomial Integer + RF ==> Fraction P + UPCF2 ==> UnivariatePolynomialCategoryFunctions2 + + Exports ==> with + factor: UP -> Factored UP + ++ factor(p) returns a prime factorisation of p. + + Implementation ==> add + likuniv: (P, SE, P) -> UP + + dummy := new()$SE + + likuniv(p, x, d) == + map(#1 / d, univariate(p, x))$UPCF2(P,SparseUnivariatePolynomial P, + RF, UP) + + factor p == + d := denom(q := elt(p,dummy::P :: RF)) + map(likuniv(#1,dummy,d), + factor(numer q)$MultivariateFactorize(SE, + IndexedExponents SE,Integer,P))$FactoredFunctions2(P, UP) + +@ +\section{package SAERFFC SAERationalFunctionAlgFactor} +<<package SAERFFC SAERationalFunctionAlgFactor>>= +)abbrev package SAERFFC SAERationalFunctionAlgFactor +++ Factorisation in UP SAE FRAC POLY INT +++ Author: Patrizia Gianni +++ Date Created: ??? +++ Date Last Updated: ??? +++ Description: +++ Factorization of univariate polynomials with coefficients in an +++ algebraic extension of \spadtype{Fraction Polynomial Integer}. +++ Keywords: factorization, algebraic extension, univariate polynomial + +SAERationalFunctionAlgFactor(UP, SAE, UPA): Exports == Implementation where + UP : UnivariatePolynomialCategory Fraction Polynomial Integer + SAE : Join(Field, CharacteristicZero, + MonogenicAlgebra(Fraction Polynomial Integer, UP)) + UPA: UnivariatePolynomialCategory SAE + + Exports ==> with + factor: UPA -> Factored UPA + ++ factor(p) returns a prime factorisation of p. + + Implementation ==> add + factor q == + factor(q, factor$RationalFunctionFactor(UP) + )$InnerAlgFactor(Fraction Polynomial Integer, UP, SAE, UPA) + +@ +\section{package ALGFACT AlgFactor} +<<package ALGFACT AlgFactor>>= +)abbrev package ALGFACT AlgFactor +++ Factorization of UP AN; +++ Author: Manuel Bronstein +++ Date Created: ??? +++ Date Last Updated: ??? +++ Description: +++ Factorization of univariate polynomials with coefficients in +++ \spadtype{AlgebraicNumber}. + +AlgFactor(UP): Exports == Implementation where + UP: UnivariatePolynomialCategory AlgebraicNumber + + N ==> NonNegativeInteger + Z ==> Integer + Q ==> Fraction Integer + AN ==> AlgebraicNumber + K ==> Kernel AN + UPQ ==> SparseUnivariatePolynomial Q + SUP ==> SparseUnivariatePolynomial AN + FR ==> Factored UP + + Exports ==> with + factor: (UP, List AN) -> FR + ++ factor(p, [a1,...,an]) returns a prime factorisation of p + ++ over the field generated by its coefficients and a1,...,an. + factor: UP -> FR + ++ factor(p) returns a prime factorisation of p + ++ over the field generated by its coefficients. + split : UP -> FR + ++ split(p) returns a prime factorisation of p + ++ over its splitting field. + doublyTransitive?: UP -> Boolean + ++ doublyTransitive?(p) is true if p is irreducible over + ++ over the field K generated by its coefficients, and + ++ if \spad{p(X) / (X - a)} is irreducible over + ++ \spad{K(a)} where \spad{p(a) = 0}. + + Implementation ==> add + import PolynomialCategoryQuotientFunctions(IndexedExponents K, + K, Z, SparseMultivariatePolynomial(Z, K), AN) + + UPCF2 ==> UnivariatePolynomialCategoryFunctions2 + + fact : (UP, List K) -> FR + ifactor : (SUP, List K) -> Factored SUP + extend : (UP, Z) -> FR + allk : List AN -> List K + downpoly: UP -> UPQ + liftpoly: UPQ -> UP + irred? : UP -> Boolean + + allk l == removeDuplicates concat [kernels x for x in l] + liftpoly p == map(#1::AN, p)$UPCF2(Q, UPQ, AN, UP) + downpoly p == map(retract(#1)@Q, p)$UPCF2(AN, UP ,Q, UPQ) + ifactor(p,l) == (fact(p pretend UP, l)) pretend Factored(SUP) + factor p == fact(p, allk coefficients p) + + factor(p, l) == + fact(p, allk removeDuplicates concat(l, coefficients p)) + + split p == + fp := factor p + unit(fp) * + _*/[extend(fc.factor, fc.exponent) for fc in factors fp] + + extend(p, n) == +-- one? degree p => primeFactor(p, n) + (degree p = 1) => primeFactor(p, n) + q := monomial(1, 1)$UP - zeroOf(p pretend SUP)::UP + primeFactor(q, n) * split((p exquo q)::UP) ** (n::N) + + doublyTransitive? p == + irred? p and irred?((p exquo + (monomial(1, 1)$UP - zeroOf(p pretend SUP)::UP))::UP) + + irred? p == + fp := factor p +-- one? numberOfFactors fp and one? nthExponent(fp, 1) + (numberOfFactors fp = 1) and (nthExponent(fp, 1) = 1) + + fact(p, l) == +-- one? degree p => primeFactor(p, 1) + (degree p = 1) => primeFactor(p, 1) + empty? l => + dr := factor(downpoly p)$RationalFactorize(UPQ) + (liftpoly unit dr) * + _*/[primeFactor(liftpoly dc.factor,dc.exponent) + for dc in factors dr] + q := minPoly(alpha := "max"/l)$AN + newl := remove(alpha = #1, l) + sae := SimpleAlgebraicExtension(AN, SUP, q) + ups := SparseUnivariatePolynomial sae + fr := factor(map(reduce univariate(#1, alpha, q), + p)$UPCF2(AN, UP, sae, ups), + ifactor(#1, newl))$InnerAlgFactor(AN, SUP, sae, ups) + newalpha := alpha::AN + map((lift(#1)$sae) newalpha, unit fr)$UPCF2(sae, ups, AN, UP) * + _*/[primeFactor(map((lift(#1)$sae) newalpha, + fc.factor)$UPCF2(sae, ups, AN, UP), + fc.exponent) for fc in factors fr] + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package IALGFACT InnerAlgFactor>> +<<package SAEFACT SimpleAlgebraicExtensionAlgFactor>> +<<package RFFACT RationalFunctionFactor>> +<<package SAERFFC SAERationalFunctionAlgFactor>> +<<package ALGFACT AlgFactor>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |